Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2300895120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487077

RESUMEN

Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Ratones , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antígeno CTLA-4 , Depleción Linfocítica
2.
Proc Natl Acad Sci U S A ; 119(36): e2205983119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037341

RESUMEN

Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNß therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNß that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.


Asunto(s)
Hidróxido de Aluminio , Inmunoterapia , Interferón Tipo I , Compuestos de Alumbre/química , Hidróxido de Aluminio/química , Animales , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Inmunoterapia/normas , Interferón Tipo I/química , Interferón Tipo I/uso terapéutico , Interferón-alfa , Interferón beta , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones
3.
Analyst ; 140(18): 6269-76, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26266749

RESUMEN

Bacillus anthracis is the causative agent of anthrax and can be contracted by humans and herbivorous mammals by inhalation, ingestion, or cutaneous exposure to bacterial spores. Due to its stability and disease potential, B. anthracis is a recognized biothreat agent and robust detection and viability methods are needed to identify spores from unknown samples. Here we report the use of smartphone-based microscopy (SPM) in combination with a simple microfluidic incubation device (MID) to detect 50 to 5000 B. anthracis Sterne spores in 3 to 5 hours. This technique relies on optical monitoring of the conversion of the ∼1 µm spores to the filamentous vegetative cells that range from tens to hundreds of micrometers in length. This distinguishing filament formation is unique to B. anthracis as compared to other members of the Bacillus cereus group. A unique feature of this approach is that the sample integrity is maintained, and the vegetative biomass can be removed from the chip for secondary molecular analysis such as PCR. Compared with existing chip-based and rapid viability PCR methods, this new approach reduces assay time by almost half, and is highly sensitive, specific, and cost effective.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , Incubadoras/microbiología , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía/instrumentación , Teléfono Inteligente , Bacillus anthracis/genética , Reacción en Cadena de la Polimerasa , Esporas Bacterianas/genética , Esporas Bacterianas/aislamiento & purificación
4.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405716

RESUMEN

The clinical use of interleukin-2 and -12 cytokines against cancer is limited by their narrow therapeutic windows due to on-target, off-tumor activation of immune cells when delivered systemically. Engineering IL-2 and IL-12 to bind to extracellular matrix collagen allows these cytokines to be retained within tumors after intralesional injection, overcoming these clinical safety challenges. While this approach has potentiated responses in syngeneic mouse tumors without toxicity, the complex tumor-immune interactions in human cancers are difficult to recapitulate in mouse models of cancer. This has driven an increased role for comparative oncology clinical trials in companion (pet) dogs with spontaneous cancers that feature analogous tumor and immune biology to human cancers. Here, we report the results from a dose-escalation clinical trial of intratumoral collagen-binding IL-2 and IL-12 cytokines in pet dogs with malignant melanoma, observing encouraging local and regional responses to therapy that may suggest human clinical benefit with this approach.

5.
Clin Cancer Res ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980919

RESUMEN

PURPOSE: Interleukin-2 and -12 cytokines have potent anti-cancer activity, but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice, and was previously safe in pet dogs with sarcoma. Here we sought to test the efficacy of this approach with in dogs with advanced melanoma. EXPERIMENTAL DESIGN: This study examined fifteen client-owned dogs with histologically- or cytologically-confirmed malignant melanoma who received a single 9 Gray fraction of radiation therapy, followed by six cycles of combined collagen-anchored IL-2 and IL-12 therapy Q2W. Cytokine dosing followed a 3+3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS: Median survival regardless of tumor stage or dose level was 256 days and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) dogs had partial responses across their combined lesions, evidence of locoregional response. Profiling by Nanostring of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS: Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.

6.
Redox Biol ; 64: 102766, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311396

RESUMEN

Catalase is an antioxidant enzyme that catalyzes the rapid conversion of hydrogen peroxide to water and oxygen. Use of catalase as a cancer therapeutic has been proposed to reduce oxidative stress and hypoxia in the tumor microenvironment, both activities which are hypothesized to reduce tumor growth. Furthermore, exposing murine tumors to exogenous catalase was previously reported to have therapeutic benefit. We studied the therapeutic effect of tumor-localized catalases with the aim to further elucidate the mechanism of action. To do this, we engineered two approaches to maximize intratumoral catalase exposure: 1) an injected extracellular catalase with enhanced tumor retention, and 2) tumor cell lines that over-express intracellular catalase. Both approaches were characterized for functionality and tested for therapeutic efficacy and mechanism in 4T1 and CT26 murine syngeneic tumor models. The injected catalase was confirmed to have enzyme activity >30,000 U/mg and was retained at the injection site for more than one week in vivo. The engineered cell lines exhibited increased catalase activity and antioxidant capacity, with catalase over-expression that was maintained for at least one week after gene expression was induced in vivo. We did not observe a significant difference in tumor growth or survival between catalase-treated and untreated mice when either approach was used. Finally, bulk RNA sequencing of tumors was performed, comparing the gene expression of catalase-treated and untreated tumors. Gene expression analysis revealed very few differentially expressed genes as a result of exposure to catalase and notably, we did not observe changes consistent with an altered state of hypoxia or oxidative stress. In conclusion, we observe that sustained intratumoral catalase neither has therapeutic benefit nor triggers significant differential expression of genes associated with the anticipated therapeutic mechanism in the subcutaneous syngeneic tumor models used. Given the lack of effect observed, we propose that further development of catalase as a cancer therapeutic should take these findings into consideration.


Asunto(s)
Antioxidantes , Neoplasias , Animales , Ratones , Catalasa/genética , Catalasa/metabolismo , Antioxidantes/metabolismo , Neoplasias/genética , Estrés Oxidativo , Hipoxia/genética , Peróxido de Hidrógeno/metabolismo , Microambiente Tumoral
7.
JCI Insight ; 8(19)2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669107

RESUMEN

Engineered cytokine-based approaches for immunotherapy of cancer are poised to enter the clinic, with IL-12 being at the forefront. However, little is known about potential mechanisms of resistance to cytokine therapies. We found that orthotopic murine lung tumors were resistant to systemically delivered IL-12 fused to murine serum albumin (MSA, IL12-MSA) because of low IL-12 receptor (IL-12R) expression on tumor-reactive CD8+ T cells. IL2-MSA increased binding of IL12-MSA by tumor-reactive CD8+ T cells, and combined administration of IL12-MSA and IL2-MSA led to enhanced tumor-reactive CD8+ T cell effector differentiation, decreased numbers of tumor-infiltrating CD4+ regulatory T cells, and increased survival of lung tumor-bearing mice. Predictably, the combination of IL-2 and IL-12 at therapeutic doses led to significant dose-limiting toxicity. Administering IL-12 and IL-2 analogs with preferential binding to cells expressing Il12rb1 and CD25, respectively, led to a significant extension of survival in mice with lung tumors while abrogating dose-limiting toxicity. These findings suggest that IL-12 and IL-2 represent a rational approach to combination cytokine therapy whose dose-limiting toxicity can be overcome with engineered cytokine variants.


Asunto(s)
Interleucina-12 , Neoplasias Pulmonares , Ratones , Animales , Interleucina-12/genética , Interleucina-2/genética , Inmunoterapia , Citocinas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
8.
Clin Cancer Res ; 29(11): 2110-2122, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014656

RESUMEN

PURPOSE: Cytokine therapies such as IL2 and IL12 suffer from impractically small therapeutic windows driven by their on-target, off-tumor activity, limiting their clinical potential despite potent antitumor effects. We previously engineered cytokines that bind and anchor to tumor collagen following intratumoral injection, and sought to test their safety and biomarker activity in spontaneous canine soft-tissue sarcomas (STS). EXPERIMENTAL DESIGN: Collagen-binding cytokines were canine-ized to minimize immunogenicity and were used in a rapid dose-escalation study in healthy beagles to identify a maximum tolerated dose. Ten client-owned pet dogs with STS were then enrolled into trial, receiving cytokines at different intervals prior to surgical tumor excision. Tumor tissue was analyzed through IHC and NanoString RNA profiling for dynamic changes within treated tumors. Archived, untreated STS samples were analyzed in parallel as controls. RESULTS: Intratumorally administered collagen-binding IL2 and IL12 were well tolerated by STS-bearing dogs, with only Grade 1/2 adverse events observed (mild fever, thrombocytopenia, neutropenia). IHC revealed enhanced T-cell infiltrates, corroborated by an enhancement in gene expression associated with cytotoxic immune function. We found concordant increases in expression of counter-regulatory genes that we hypothesize would contribute to a transient antitumor effect, and confirmed in mouse models that combination therapy to inhibit this counter-regulation can improve responses to cytokine therapy. CONCLUSIONS: These results support the safety and activity of intratumorally delivered, collagen-anchoring cytokines for inflammatory polarization of the canine STS tumor microenvironment. We are further evaluating the efficacy of this approach in additional canine cancers, including oral malignant melanoma.


Asunto(s)
Melanoma , Sarcoma , Ratones , Animales , Perros , Interleucina-12/genética , Interleucina-2 , Microambiente Tumoral , Citocinas , Sarcoma/tratamiento farmacológico , Colágeno
9.
Commun Med (Lond) ; 3(1): 108, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558833

RESUMEN

BACKGROUND: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease. METHODS: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART). Xenograft and autochthonous tumor models were treated with hypofractionated ablative doses of radiotherapy. RESULTS: We demonstrate that hypofractionated regimens used in clinical practice can be effectively delivered in mouse models. SART alters tumor stroma and the immune environment, improves survival in GEMMs of primary prostate and colorectal cancer, and synergizes with androgen deprivation in prostate cancer. Complete pathologic responses were achieved in xenograft models, but not in GEMMs. CONCLUSIONS: While SART is capable of fully ablating xenografts, it is unable to completely eradicate disease in GEMMs, arguing that resistance to potentially curative therapy can be modeled in GEMMs.


Mice can be used to model the types of cancer seen in people to investigate the effects of cancer therapies, such as radiation. Here, we apply radiation therapy treatments that are able to cure cancer in humans to mice that have cancer of the prostate or colorectum. We show that the mice do not experience many side effects and that the tumours reduce in size, but in some cases show progression after treatment. Our study demonstrates that mice can be used to better understand how human cancers respond to radiation treatment, which can lead to the development of improved treatments and treatment schedules.

10.
MAbs ; 14(1): 2088454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924382

RESUMEN

Monoclonal antibodies targeting the programmed cell death protein 1 (PD-1) remain the most prevalent cancer immunotherapy both as a monotherapy and in combination with additional therapies. Despite the extensive success of anti-PD-1 monoclonal antibodies in the clinic, the experimental relationship between binding affinity and functional potency for anti-PD-1 antibodies in vivo has not been reported. Anti-PD-1 antibodies with higher and lower affinity than nivolumab or pembrolizumab are entering the clinic and show varied preclinical efficacy. Here, we explore the role of broad-ranging affinity variation within a single lineage in a syngeneic immunocompetent mouse model. By developing a panel of murine anti-PD-1 antibodies with varying affinity (ranging from KD = 20 pM - 15 nM), we find that there is a threshold affinity required for maximum efficacy at a given dose in the treatment of the MC38 adenocarcinoma model with anti-PD-1 immunotherapy. Physiologically based pharmacokinetic modeling complements interpretation of the experimental results and highlights the direct relationship between dose, affinity, and PD-1 target saturation in the tumor.


Asunto(s)
Anticuerpos Monoclonales , Inmunoterapia , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Factores Inmunológicos , Inmunoterapia/métodos , Ratones , Nivolumab
11.
PNAS Nexus ; 1(5): pgac244, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712341

RESUMEN

Confining cytokine exposure to the tumors would greatly enhance cancer immunotherapy safety and efficacy. Immunocytokines, cytokines fused to tumor-targeting antibodies, have been developed with this intention, but without significant clinical success to date. A critical limitation is uptake by receptor-expressing cells in the blood, that decreases the dose at the tumor and engenders toxicity. Small-format immunocytokines, constructed with antibody fragments, are hypothesized to improve tumor specificity due to rapid systemic clearance. However, effective design criteria for small-format immunocytokines need further examination. Here, we engineer small interleukin-2 (IL-2) immunocytokines fused to nanobodies with nanomolar to picomolar affinities for the tumor-specific EIIIB domain of fibronectin (also known as EDB). Upon intravenous delivery into immunocompetent mice, such immunocytokines led to similar tumor growth delay as size-matched untargeted IL-2. Intratumoral (i.t.) delivery imparted improved survival dependent on affinity to EIIIB. I.t. administration offers a promising avenue to deliver small-format immunocytokines, given effective affinity for the tumor microenvironment.

12.
Nat Biomed Eng ; 6(2): 129-143, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013574

RESUMEN

Anti-tumour inflammatory cytokines are highly toxic when administered systemically. Here, in multiple syngeneic mouse models, we show that the intratumoural injection of recombinantly expressed cytokines bound tightly to the common vaccine adjuvant aluminium hydroxide (alum) (via ligand exchange between hydroxyls on the surface of alum and phosphoserine residues tagged to the cytokine by an alum-binding peptide) leads to weeks-long retention of the cytokines in the tumours, with minimal side effects. Specifically, a single dose of alum-tethered interleukin-12 induced substantial interferon-γ-mediated T-cell and natural-killer-cell activities in murine melanoma tumours, increased tumour antigen accumulation in draining lymph nodes and elicited robust tumour-specific T-cell priming. Moreover, intratumoural injection of alum-anchored cytokines enhanced responses to checkpoint blockade, promoting cures in distinct poorly immunogenic syngeneic tumour models and eliciting control over metastases and distant untreated lesions. Intratumoural treatment with alum-anchored cytokines represents a safer and tumour-agnostic strategy to improving local and systemic anticancer immunity.


Asunto(s)
Compuestos de Alumbre , Citocinas , Compuestos de Alumbre/farmacología , Animales , Inmunoterapia , Interleucina-12 , Ratones
13.
Lab Chip ; 19(6): 1035-1040, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30734822

RESUMEN

Digital nucleic acid amplification and detection methods provide excellent sensitivity and specificity and allow absolute quantification of target nucleic acids. Isothermal methods such as digital loop-mediated isothermal amplification (digital LAMP) have potential for use in rapid disease diagnosis in low-resource settings due to their speed and lack of thermal cycling. We previously developed a self-digitization (SD) chip, a simple microfluidics device that automatically digitizes a sample into an array of nanoliter wells, for use in digital LAMP. In this work, we improve the SD chip design to increase sample loading efficiency, speed, and completeness, and test a range of well volumes and numbers. We demonstrate the diagnostic capability of this platform by applying it to quantifying human papillomavirus 18 gene.


Asunto(s)
ADN Viral/análisis , Papillomavirus Humano 18/genética , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Viral/metabolismo , Humanos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Reproducibilidad de los Resultados
14.
Lab Chip ; 18(22): 3501-3506, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30351338

RESUMEN

Quantitative detection of RNA is important in molecular biology and clinical diagnostics. Nucleic acid sequence-based amplification (NASBA), a single-step method to amplify single-stranded RNA, is attractive for use in point-of-care (POC) diagnostics because it is an isothermal technique that is as sensitive as RT-PCR with a shorter reaction time. However, NASBA is limited in its ability to provide accurate quantitative information, such as viral load or RNA copy number. Here we test a digital format of NASBA (dNASBA) using a self-digitization (SD) chip platform, and apply it to quantifying HIV-1 RNA. We demonstrate that dNASBA is more sensitive and accurate than the real-time quantitative NASBA, and can be used to quantify HIV-1 RNA in plasma samples. Digital NASBA is thus a promising POC diagnostics tool for use in resource-limited settings.


Asunto(s)
VIH-1/genética , Dispositivos Laboratorio en un Chip , ARN Viral/análisis , ARN Viral/genética , Replicación de Secuencia Autosostenida/instrumentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA