Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904998

RESUMEN

Accuracy is the vital indicator in location estimation used in many scenarios, such as warehousing, tracking, monitoring, security surveillance, etc., in a wireless sensor network (WSN). The conventional range-free DV-Hop algorithm uses hop distance to estimate sensor node positions but has limitations in terms of accuracy. To address the issues of low accuracy and high energy consumption of DV-Hop-based localization in static WSNs, this paper proposes an enhanced DV-Hop algorithm for efficient and accurate localization with reduced energy consumption. The proposed method consists of three steps: first, the single-hop distance is corrected using the RSSI value for a specific radius; second, the average hop distance between unknown nodes and anchors is modified based on the difference between actual and estimated distances; and finally, the least-squares approach is used to estimate the location of each unknown node. The proposed algorithm, named Hop-correction and energy-efficient DV-Hop (HCEDV-Hop), is executed and evaluated in MATLAB to compare its performance with benchmark schemes. The results show that HCEDV-Hop improves localization accuracy by an average of 81.36%, 77.99%, 39.72%, and 9.96% compared to basic DV-Hop, WCL, improved DV-maxHop, and improved DV-Hop, respectively. In terms of message communication, the proposed algorithm reduces energy usage by 28% compared to DV-Hop and 17% compared to WCL.

2.
Brain Sci ; 13(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759856

RESUMEN

This research comprises experiments with a deep learning framework for fully automating the skull stripping from brain magnetic resonance (MR) images. Conventional techniques for segmentation have progressed to the extent of Convolutional Neural Networks (CNN). We proposed and experimented with a contemporary variant of the deep learning framework based on mask region convolutional neural network (Mask-RCNN) for all anatomical orientations of brain MR images. We trained the system from scratch to build a model for classification, detection, and segmentation. It is validated by images taken from three different datasets: BrainWeb; NAMIC, and a local hospital. We opted for purposive sampling to select 2000 images of T1 modality from data volumes followed by a multi-stage random sampling technique to segregate the dataset into three batches for training (75%), validation (15%), and testing (10%) respectively. We utilized a robust backbone architecture, namely ResNet-101 and Functional Pyramid Network (FPN), to achieve optimal performance with higher accuracy. We subjected the same data to two traditional methods, namely Brain Extraction Tools (BET) and Brain Surface Extraction (BSE), to compare their performance results. Our proposed method had higher mean average precision (mAP) = 93% and content validity index (CVI) = 0.95%, which were better than comparable methods. We contributed by training Mask-RCNN from scratch for generating reusable learning weights known as transfer learning. We contributed to methodological novelty by applying a pragmatic research lens, and used a mixed method triangulation technique to validate results on all anatomical modalities of brain MR images. Our proposed method improved the accuracy and precision of skull stripping by fully automating it and reducing its processing time and operational cost and reliance on technicians. This research study has also provided grounds for extending the work to the scale of explainable artificial intelligence (XAI).

3.
Comput Intell Neurosci ; 2022: 8303504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712069

RESUMEN

Cloud computing is a long-standing dream of computing as a utility, where users can store their data remotely in the cloud to enjoy on-demand services and high-quality applications from a shared pool of configurable computing resources. Thus, the privacy and security of data are of utmost importance to all of its users regardless of the nature of the data being stored. In cloud computing environments, it is especially critical because data is stored in various locations, even around the world, and users do not have any physical access to their sensitive data. Therefore, we need certain data protection techniques to protect the sensitive data that is outsourced over the cloud. In this paper, we conduct a systematic literature review (SLR) to illustrate all the data protection techniques that protect sensitive data outsourced over cloud storage. Therefore, the main objective of this research is to synthesize, classify, and identify important studies in the field of study. Accordingly, an evidence-based approach is used in this study. Preliminary results are based on answers to four research questions. Out of 493 research articles, 52 studies were selected. 52 papers use different data protection techniques, which can be divided into two main categories, namely noncryptographic techniques and cryptographic techniques. Noncryptographic techniques consist of data splitting, data anonymization, and steganographic techniques, whereas cryptographic techniques consist of encryption, searchable encryption, homomorphic encryption, and signcryption. In this work, we compare all of these techniques in terms of data protection accuracy, overhead, and operations on masked data. Finally, we discuss the future research challenges facing the implementation of these techniques.


Asunto(s)
Nube Computacional , Privacidad , Seguridad Computacional , Confidencialidad , Atención a la Salud
4.
Cornea ; 38(11): 1456-1464, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31490272

RESUMEN

PURPOSE: To develop semi-automated application software that quickly analyzes infrared meibography images taken with the CSO Sirius Topographer (CSO, Italy) and to compare them to the manual analysis system on the device (Phoenix software platform). METHODS: A total of 52 meibography images verified as high quality were used and analyzed through manual and semi-automated meibomian gland (MG) detector software in this study. For the manual method, an experienced researcher circumscribed the MGs by putting dots around grape-like clusters in a predetermined rectangular area, and Phoenix software measured the MG loss area by percentage, which took around 10 to 15 minutes. MG loss was graded from 1 (<25%) to 4 (severe >75%). For the semi-automated method, 2 blind physicians (I and II) determined the area to be masked by putting 5 to 6 dots on the raw images and measured the MG loss area using the newly developed semi-automated MG detector application software in less than 1 minute. Semi-automated measurements were repeated 3 times on different days, and the results were evaluated using paired-sample t test, Bland-Altman, and kappa κ analysis. RESULTS: The mean MG loss area was 37.24% with the manual analysis and 40.09%, 37.89%, and 40.08% in the first, second, and third runs with the semi-automated analysis (P < 0.05). Manual analysis scores showed a remarkable correlation with the semi-automated analysis performed by 2 operators (r = 0.950 and r = 0.959, respectively) (P < 0.001). According to Bland-Altman analysis, the 95% limits of agreement between manual analysis and semi-automated analysis by operator I were between -10.69% and 5% [concordance correlation coefficient (CCC) = 0.912] and between -9.97% and 4.3% (CCC = 0.923) for operator II. The limit of interoperator agreement in semi-automated analysis was between -4.89% and 4.92% (CCC = 0.973). There was good to very good agreement in grading between manual and semi-automated analysis results (κ 0.76-0.84) and very good interoperator agreement with semi-automated software (κ 0.91) (P < 0.001). CONCLUSIONS: For the manual analysis of meibography images, around one hundred dots have to be put around grape-like clusters to determine the MGs, which makes the process too long and prone to errors. The newly developed semi-automated software is a highly reproducible, practical, and faster method to analyze infrared meibography images with excellent correlation with the manual analysis.


Asunto(s)
Algoritmos , Técnicas de Diagnóstico Oftalmológico , Rayos Infrarrojos , Disfunción de la Glándula de Meibomio/diagnóstico , Glándulas Tarsales/diagnóstico por imagen , Programas Informáticos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
5.
Comput Intell Neurosci ; 2016: 3676582, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27413363

RESUMEN

Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.


Asunto(s)
Redes de Comunicación de Computadores , Simulación por Computador , Memoria a Largo Plazo/fisiología , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA