Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 187(3): 521-525, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306979

RESUMEN

High-quality predicted structures enable structure-based approaches to an expanding number of drug discovery programs. We propose that by utilizing free energy perturbation (FEP), predicted structures can be confidently employed to achieve drug design goals. We use structure-based modeling of hERG inhibition to illustrate this value of FEP.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Termodinámica , Entropía
2.
Bioorg Med Chem Lett ; 73: 128891, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35842205

RESUMEN

TYK2 is a member of the JAK family of kinases and a key mediator of IL-12, IL-23, and type I interferon signaling. These cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genetic association studies, TYK2 inhibition is an attractive therapeutic strategy for these diseases. Herein, we report the discovery of a series of highly selective catalytic site TYK2 inhibitors designed using FEP+ and structurally enabled design starting from a virtual screen hit. We highlight the structure-based optimization to identify a lead candidate 30, a potent cellular TYK2 inhibitor with excellent selectivity, pharmacokinetic properties, and in vivo efficacy in a mouse psoriasis model.


Asunto(s)
Psoriasis , TYK2 Quinasa , Animales , Humanos , Quinasas Janus , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Psoriasis/tratamiento farmacológico , Roedores
3.
J Chem Theory Comput ; 13(8): 3881-3897, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28636825

RESUMEN

We introduce a new mixed resolution, all-atom/coarse-grained approach (AACG), for modeling peptides in aqueous solution and apply it to characterizing the aggregation of melittin. All of the atoms in peptidic components are represented, while a single site is used for each water molecule. With the full flexibility of the peptide retained, our AACG method achieves speedups by a factor of 3-4 for CPU time reduction and another factor of roughly 7 for diffusion. An Ewald treatment permits the inclusion of long-range electrostatic interactions. These characteristics fit well with the requirements for studying peptide association and aggregation, where the system sizes and time scales require considerable computational resources with all-atom models. In particular, AACG is well suited for biologics since changes in peptide shape and long-range electrostatics may play an important role. The application of AACG to melittin, a 26-residue peptide with a well-known propensity to aggregate in solution, serves as an initial demonstration of this technology for studying peptide aggregation. We observed the formation of melittin aggregates during our simulations and characterized the time-evolution of aggregate size distribution, buried surface areas, and residue contacts. Key interactions including π-cation and π-stacking involving TRP19 were also examined. Our AACG simulations demonstrated a clear salt effect and a moderate temperature effect on aggregation and support the molten globule model of melittin aggregates. As a showcase, this work illustrates the useful role for AACG in investigations of peptide aggregation and its potential to guide formulation and design of biologics.


Asunto(s)
Abejas/química , Meliteno/química , Agregado de Proteínas , Animales , Simulación por Computador , Modelos Moleculares , Sales (Química)/química , Temperatura , Termodinámica , Agua/química
4.
J Phys Chem B ; 119(33): 10390-8, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26208115

RESUMEN

Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed­for the first time in atomistic detail­that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety.


Asunto(s)
Meliteno/química , Simulación de Dinámica Molecular , Agregado de Proteínas , Agua/química , Secuencia de Aminoácidos , Dimerización , Datos de Secuencia Molecular , Concentración Osmolar , Estructura Secundaria de Proteína , Soluciones , Temperatura
5.
J Med Chem ; 47(7): 1739-49, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15027865

RESUMEN

Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.


Asunto(s)
Diseño de Fármacos , Ligandos , Modelos Moleculares , Proteínas/química , Sitios de Unión , Conformación Molecular , Estructura Molecular , Método de Montecarlo , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Termodinámica , Timidina Quinasa/química
6.
Curr Protoc Bioinformatics ; Chapter 8: Unit 8.12, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18428795

RESUMEN

Glide is a ligand docking program for predicting protein-ligand binding modes and ranking ligands via high-throughput virtual screening. Glide utilizes two different scoring functions, SP and XP GlideScore, to rank-order compounds. Three modes of sampling ligand conformational and positional degrees of freedom are available to determine the optimal ligand orientation relative to a rigid protein receptor geometry. This unit presents protocols for flexible ligand docking with Glide, optionally including ligand constraints or ligand molecular similarities.


Asunto(s)
Algoritmos , Ligandos , Modelos Químicos , Modelos Moleculares , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Programas Informáticos , Simulación por Computador , Conformación Proteica , Análisis de Secuencia de Proteína/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA