Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525759

RESUMEN

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Animales , Encéfalo/fisiología , Cromosomas Humanos X , Ritmo Circadiano , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Edición Génica , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Mutación , Dolor , Síndrome de Rett/fisiopatología , Sueño , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Transcriptoma
2.
Semin Cancer Biol ; 96: 11-25, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37704183

RESUMEN

Breast cancer is a significant global health burden, with increasing morbidity and mortality worldwide. Early screening and accurate diagnosis are crucial for improving prognosis. Radiographic imaging modalities such as digital mammography (DM), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), ultrasound (US), and nuclear medicine techniques, are commonly used for breast cancer assessment. And histopathology (HP) serves as the gold standard for confirming malignancy. Artificial intelligence (AI) technologies show great potential for quantitative representation of medical images to effectively assist in segmentation, diagnosis, and prognosis of breast cancer. In this review, we overview the recent advancements of AI technologies for breast cancer, including 1) improving image quality by data augmentation, 2) fast detection and segmentation of breast lesions and diagnosis of malignancy, 3) biological characterization of the cancer such as staging and subtyping by AI-based classification technologies, 4) prediction of clinical outcomes such as metastasis, treatment response, and survival by integrating multi-omics data. Then, we then summarize large-scale databases available to help train robust, generalizable, and reproducible deep learning models. Furthermore, we conclude the challenges faced by AI in real-world applications, including data curating, model interpretability, and practice regulations. Besides, we expect that clinical implementation of AI will provide important guidance for the patient-tailored management.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Inteligencia Artificial , Pronóstico , Mamografía , Multiómica , Mama
3.
Magn Reson Med ; 91(3): 1149-1164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929695

RESUMEN

PURPOSE: Preclinical MR fingerprinting (MRF) suffers from long acquisition time for organ-level coverage due to demanding image resolution and limited undersampling capacity. This study aims to develop a deep learning-assisted fast MRF framework for sub-millimeter T1 and T2 mapping of entire macaque brain on a preclinical 9.4 T MR system. METHODS: Three dimensional MRF images were reconstructed by singular value decomposition (SVD) compressed reconstruction. T1 and T2 mapping for each axial slice exploited a self-attention assisted residual U-Net to suppress aliasing-induced quantification errors, and the transmit-field (B1 + ) measurements for robustness against B1 + inhomogeneity. Supervised network training used MRF images simulated via virtual parametric maps and a desired undersampling scheme. This strategy bypassed the difficulties of acquiring fully sampled preclinical MRF data to guide network training. The proposed fast MRF framework was tested on experimental data acquired from ex vivo and in vivo macaque brains. RESULTS: The trained network showed reasonable adaptability to experimental MRF images, enabling robust delineation of various T1 and T2 distributions in the brain tissues. Further, the proposed MRF framework outperformed several existing fast MRF methods in handling the aliasing artifacts and capturing detailed cerebral structures in the mapping results. Parametric mapping of entire macaque brain at nominal resolution of 0.35 × $$ \times $$ 0.35 × $$ \times $$ 1 mm3 can be realized via a 20-min 3D MRF scan, which was sixfold faster than the baseline protocol. CONCLUSION: Introducing deep learning to MRF framework paves the way for efficient organ-level high-resolution quantitative MRI in preclinical applications.


Asunto(s)
Aprendizaje Profundo , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
Cereb Cortex ; 33(24): 11486-11500, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37833708

RESUMEN

Defining the early status of Alzheimer's disease is challenging. Theoretically, the statuses in the Alzheimer's disease continuum are expected to share common features. Here, we explore to verify and refine candidature early statuses of Alzheimer's disease with features learned from deep learning. We train models on brain functional networks to accurately classify between amnestic and non-amnestic mild cognitive impairments and between healthy controls and mild cognitive impairments. The trained models are applied to Alzheimer's disease and subjective cognitive decline groups to suggest feature similarities among the statuses and identify informative subpopulations. The amnestic mild cognitive impairment vs non-amnestic mild cognitive impairments classifier believes that 71.8% of Alzheimer's disease are amnestic mild cognitive impairment. And 73.5% of subjective cognitive declines are labeled as mild cognitive impairments, 88.8% of which are further suggested as "amnestic mild cognitive impairment." Further multimodal analyses suggest that the amnestic mild cognitive impairment-like Alzheimer's disease, mild cognitive impairment-like subjective cognitive decline, and amnestic mild cognitive impairment-like subjective cognitive decline exhibit more Alzheimer's disease -related pathological changes (elaborated ß-amyloid depositions, reduced glucose metabolism, and gray matter atrophy) than non-amnestic mild cognitive impairments -like Alzheimer's disease, healthy control-like subjective cognitive decline, and non-amnestic mild cognitive impairments -like subjective cognitive decline. The test-retest reliability of the subpopulation identification is fair to good in general. The study indicates overall similarity among subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer's disease and implies their progression relationships. The results support "deep feature comparison" as a potential beneficial framework to verify and refine early Alzheimer's disease status.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Reproducibilidad de los Resultados , Disfunción Cognitiva/patología , Encéfalo , Sustancia Gris/patología , Progresión de la Enfermedad
5.
Hum Brain Mapp ; 44(12): 4523-4534, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318814

RESUMEN

The explorations of brain functional connectivity network (FCN) using resting-state functional magnetic resonance imaging can provide crucial insights into discriminative analysis of neuropsychiatric disorders, such as schizophrenia (SZ). Pearson's correlation (PC) is widely used to construct a densely connected FCN which may overlook some complex interactions of paired regions of interest (ROIs) under confounding effect of other ROIs. Although the method of sparse representation takes into account this issue, it penalizes each edge equally, which often makes the FCN look like a random network. In this paper, we establish a new framework, called convolutional neural network with sparsity-guided multiple functional connectivity, for SZ classification. The framework consists of two components. (1) The first component constructs a sparse FCN by integrating PC and weighted sparse representation (WSR). The FCN retains the intrinsic correlation between paired ROIs, and eliminates false connection simultaneously, resulting in sparse interactions among multiple ROIs with the confounding effect regressed out. (2) In the second component, we develop a functional connectivity convolution to learn discriminative features for SZ classification from multiple FCNs by mining the joint spatial mapping of FCNs. Finally, an occlusion strategy is employed to explore the contributive regions and connections, to derive the potential biomarkers in identifying associated aberrant connectivity of SZ. The experiments on SZ identification verify the rationality and advantages of our proposed method. This framework also can be used as a diagnostic tool for other neuropsychiatric disorders.


Asunto(s)
Esquizofrenia , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Encéfalo
6.
Hum Brain Mapp ; 44(4): 1779-1792, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515219

RESUMEN

Precise segmentation of infant brain magnetic resonance (MR) images into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) are essential for studying neuroanatomical hallmarks of early brain development. However, for 6-month-old infants, the extremely low-intensity contrast caused by inherent myelination hinders accurate tissue segmentation. Existing convolutional neural networks (CNNs) based segmentation models for this task generally employ single-scale symmetric convolutions, which are inefficient for encoding the isointense tissue boundaries in baby brain images. Here, we propose a 3D mixed-scale asymmetric convolutional segmentation network (3D-MASNet) framework for brain MR images of 6-month-old infants. We replaced the traditional convolutional layer of an existing to-be-trained network with a 3D mixed-scale convolution block consisting of asymmetric kernels (MixACB) during the training phase and then equivalently converted it into the original network. Five canonical CNN segmentation models were evaluated using both T1- and T2-weighted images of 23 6-month-old infants from iSeg-2019 datasets, which contained manual labels as ground truth. MixACB significantly enhanced the average accuracy of all five models and obtained the most considerable improvement in the fully convolutional network model (CC-3D-FCN) and the highest performance in the Dense U-Net model. This approach further obtained Dice coefficient accuracies of 0.931, 0.912, and 0.961 in GM, WM, and CSF, respectively, ranking first among 30 teams on the validation dataset of the iSeg-2019 Grand Challenge. Thus, the proposed 3D-MASNet can improve the accuracy of existing CNNs-based segmentation models as a plug-and-play solution that offers a promising technique for future infant brain MRI studies.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Humanos , Lactante , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Sustancia Gris
7.
Hum Brain Mapp ; 44(3): 861-875, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269199

RESUMEN

It is an essential task to construct brain templates and analyze their anatomical structures in neurological and cognitive science. Generally, templates constructed from magnetic resonance imaging (MRI) of a group of subjects can provide a standard reference space for analyzing the structural and functional characteristics of the group. With recent development of artificial intelligence (AI) techniques, it is desirable to explore AI registration methods for quantifying age-specific brain variations and tendencies across different ages. In this article, we present an AI-based age-specific template construction (called ASTC) framework for longitudinal structural brain analysis using T1-weighted MRIs of 646 subjects from 18 to 82 years old collected from four medical centers. Altogether, 13 longitudinal templates were constructed at a 5-year age interval using ASTC, and tissue segmentation and substructure parcellation were performed for analysis across different age groups. The results indicated consistent changes in brain structures along with aging and demonstrated the capability of ASTC for longitudinal neuroimaging study.


Asunto(s)
Inteligencia Artificial , Encéfalo , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Inteligencia , Factores de Edad , Procesamiento de Imagen Asistido por Computador/métodos
8.
Annu Rev Biomed Eng ; 24: 179-201, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316609

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Inteligencia Artificial , Prueba de COVID-19 , Humanos , SARS-CoV-2
9.
J Neurooncol ; 163(1): 71-82, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37173511

RESUMEN

PURPOSE: Classification and grading of central nervous system (CNS) tumours play a critical role in the clinic. When WHO CNS5 simplifies the histopathology diagnosis and places greater emphasis on molecular pathology, artificial intelligence (AI) has been widely used to meet the increased need for an automatic histopathology scheme that could liberate pathologists from laborious work. This study was to explore the diagnosis scope and practicality of AI. METHODS: A one-stop Histopathology Auxiliary System for Brain tumours (HAS-Bt) is introduced based on a pipeline-structured multiple instance learning (pMIL) framework developed with 1,385,163 patches from 1038 hematoxylin and eosin (H&E) slides. The system provides a streamlined service including slide scanning, whole-slide image (WSI) analysis and information management. A logical algorithm is used when molecular profiles are available. RESULTS: The pMIL achieved an accuracy of 0.94 in a 9-type classification task on an independent dataset composed of 268 H&E slides. Three auxiliary functions are developed and a built-in decision tree with multiple molecular markers is used to automatically formed integrated diagnosis. The processing efficiency was 443.0 s per slide. CONCLUSION: HAS-Bt shows outstanding performance and provides a novel aid for the integrated neuropathological diagnostic workflow of brain tumours using CNS 5 pipeline.


Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas , Humanos , Algoritmos , Aprendizaje Automático Supervisado , Organización Mundial de la Salud
10.
Cereb Cortex ; 32(21): 4641-4656, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35136966

RESUMEN

Subcortical ischemic vascular disease could induce subcortical vascular cognitive impairments (SVCIs), such as amnestic mild cognitive impairment (aMCI) and non-amnestic MCI (naMCI), or sometimes no cognitive impairment (NCI). Previous SVCI studies focused on focal structural lesions such as lacunes and microbleeds, while the functional connectivity networks (FCNs) from functional magnetic resonance imaging are drawing increasing attentions. Considering remarkable variations in structural lesion sizes, we expect that seeking abnormalities in the multiscale hierarchy of brain FCNs could be more informative to differentiate SVCI patients with varied outcomes (NCI, aMCI, and naMCI). Driven by this hypothesis, we first build FCNs based on the atlases at multiple spatial scales for group comparisons and found distributed FCN differences across different spatial scales. We then verify that combining multiscale features in a prediction model could improve differentiation accuracy among NCI, aMCI, and naMCI. Furthermore, we propose a graph convolutional network to integrate the naturally emerged multiscale features based on the brain network hierarchy, which significantly outperforms all other competing methods. In addition, the predictive features derived from our method consistently emphasize the limbic network in identifying aMCI across the different scales. The proposed analysis provides a better understanding of SVCI and may benefit its clinical diagnosis.


Asunto(s)
Disfunción Cognitiva , Conectoma , Enfermedades Vasculares , Humanos , Disfunción Cognitiva/psicología , Encéfalo , Imagen por Resonancia Magnética/métodos , Enfermedades Vasculares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA