RESUMEN
Olverembatinib represents the third-generation breakpoint cluster region protein-Abelson-murine leukemia 1 (BCR-ABL1) tyrosine kinase inhibitor with oral bioavailability, which can be used to overcome the T315I mutation in Philadelphia chromosome-positive (Ph +) leukemia. BCR-ABL-independent resistance to olverembatinib has been reported among patients in various clinical cases. However, the mechanism of olverembatinib resistance has rarely been reported. This study has illustrated bone marrow cell transcriptome and metabolome profiles among Ph + acute lymphoblastic leukemias (ALL) cases pre- and post-olverembatinib resistance. The transcriptome studies demonstrated that PI3K/AKT, purine metabolism, and other signaling pathways could play a vital role in olverembatinib resistance. As suggested by metabolomics, olverembatinib resistance in Ph + ALL was associated with purine metabolism alterations. Subsequently, high-performance liquid chromatography along with real-time quantitative PCR was utilized to measure purine metabolism-related mRNA levels and metabolism expression levels between olverembatinib resistance and sensitive cell lines. Our results elucidate the mechanism of olverembatinib resistance in Ph + ALL at transcriptome and metabolome levels, which facilitate a better understanding of olverembatinib resistance and hence may prove crucial in identifying novel drugs to tackle this conundrum.
Asunto(s)
Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Metaboloma , Mutación , Fosfatidilinositol 3-Quinasas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/farmacología , Purinas , TranscriptomaRESUMEN
OBJECTIVE: Children with ADHD are reported to accompany by various degrees of recognition memory cognitive deficits. We aimed to investigate age-related changes of the amplitude in event-related potential recordings on recognition memory in Chinese children with ADHD and to provide theoretical basis of neuro-electrophysiology for the cognition development of children. METHOD: ERP and behavioral data of 6- to -10-year-old children with ADHD (n = 94) and typically developing controls (TD, n = 96) were collected while the children performed a classical visual study-test paradigm task. RESULTS: Children with ADHD have defects in pictures recognition and showed a significantly smaller P2 component than that of TD children. The development of P2 and P3 component were different between the two groups. Moreover, the TD children showed the frontal old/new effect (N2) taken as a correlate of familiarity at 6 years old, and a parietal old/new effect (P3) taken as a correlate of recollection at 9 years old, while children with ADHD showed a parietal old/new effect (P3) only at 6 years old. CONCLUSION: Our study provided the novel evidence that recognition memory follow different developmental trajectories at the age of 6-10 between TD and ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos del Conocimiento , Humanos , Niño , Potenciales Evocados/fisiología , Reconocimiento en Psicología/fisiología , Cognición , ElectroencefalografíaRESUMEN
Despite high remission rates following chimeric antigen receptor T cell (CAR-T) cell therapy in B-cell acute lymphoblastic leukemia (B-ALL), relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may improve the CAR-T effect. The in vitro and in vivo leukemia model was established, and the anti-tumor effects of BiCAR-T, CD19 CAR-T, CD22 CAR-T, and LoopCAR6 cells were observed. We found that the BiCAR-T cells showed significant cytotoxicity in vitro and in vivo. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce the risk of antigen loss.
Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia Experimental/terapia , Receptores Quiméricos de Antígenos/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Antígenos CD19/genética , Femenino , Humanos , Células K562 , Lentivirus/genética , Ratones , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genéticaRESUMEN
BACKGROUND: To investigate the effect of TriBAFF-CAR-T cells on hematological tumor cells. METHODS: TriBAFF-CAR-T and CD19-CAR-T cells were co-cultured with BAFFR-bearing B-cell malignancies at different effector/target ratios to evaluate the anti-tumor effects. In vivo, TriBAFF-CAR-T and CD19-CAR-T cells were intravenously injected into Raji-luciferase xenograft mice. CD19 antigens losing lymphoblasts was simulated by Raji knocking out CD19 (CD19KO) to investigate the effect of TriBAFF-CAR-T cells on CD19KO Raji. RESULTS: Both TriBAFF-CAR-T and CD19-CAR-T cells significantly induced the lysis of Raji, BALL-1, and Jeko-1. Moreover, when CD19-CAR-T cells specifically caused the lysis of K562 with overexpressed CD19, the lethal effect of TriBAFF-CAR-T cells was also specific for BAFFR-bearing K562 with increasing levels of interleukin-2 and INF-γ. The TriBAFF-CAR-T have the same effect with CD19-CAR-T cells in treating Raji xenofraft mice. TriBAFF-CAR-T cells also have great effect in CD19KO Raji cells. CONCLUSIONS: In this study, we successfully constructed novel TriBAFF-CAR-T cells to eliminate BAFFR-bearing and CD19 antigen loss in hematological tumor cells.
RESUMEN
The micro-stripe structure was prepared by laser interference induced forward transfer technique, composed of Ag nano-particles (NPs). The effects of the film thickness with the carbon nano-particles mixed polyimide (CNPs@PI), Ag film thickness, and laser fluence were studied on the transferred micro-stripe structure. The periodic Ag micro-stripe with good resolution was obtained in a wide range of CNPs@PI film thickness from â¼0.5 to â¼1.0µm for the Ag thin film â¼20 nm. The distribution of the Ag NPs composing the micro-stripe was compact. Nevertheless, the average size of the transferred Ag NPs was increased from â¼41 to â¼197 nm with the change of the Ag donor film from â¼10 to â¼40 nm. With the increase of the laser fluence from 102 to 306 mJ·cm-2per-beam, the transferred Ag NPs became aggregative, improving the resolution of the corresponding micro-stripe. Finally, the transferred Ag micro-stripe exhibited the significant surface enhanced Raman scattering (SERS) property for rhodamine B (RhB). While the concentration of the RhB reached 10-10mol·L-1, the Raman characteristic peaks of the RhB were still observed clearly at 622, 1359 and 1649 cm-1. These results indicate that the transferred Ag micro-stripe has potential application as a SERS chip in drug and food detection.
RESUMEN
Airway remodeling consists of the structural changes of airway walls, which is often considered the result of longstanding airway inflammation, but it may be present to an equivalent degree in the airways of children with asthma, raising the need for early and specific therapeutic interventions. The arachidonic acid cytochrome P-450 (CYP) pathway has thus far received relatively little attention in its relation to asthma. In this study, we studied the inhibition of soluble epoxide hydrolase (sEH) on airway remodeling and hyperresponsiveness (AHR) in a chronic asthmatic model which long-term exposure to antigen over a period of 12 weeks. The expression of sEH and CYP2J2, the level of 14, 15-epoxyeicosatrienoic acids (EETs), airway remodeling, hyperresponsiveness and inflammation were analyzed to determine the inhibition of sEH. The intragastric administration of 3 or 10 mg/kg ZDHXB-101, which is a structural derivative of natural product honokiol and a novel soluble epoxide hydrolase (sEH) inhibitor, daily for 9 weeks significantly increased the level of 14, 15-EETs by inhibiting the expression of sEH and increasing the expression of CYP2J2 in lung tissues. ZDHXB-101 reduced the expression of remodeling-related markers such as interleukin (IL)-13, IL-17, MMP-9 N-cadherin, α-smooth muscle actin, S100A4, Twist, goblet cell metaplasia, and collagen deposition in the lung tissue or in bronchoalveolar lavage fluid. Moreover, ZDHXB-101 alleviated AHR, which is an indicator that is used to evaluate the airway remodeling function. The inhibitory effects of ZDHXB-101 were demonstrated to be related to its direct inhibition of the extracellular signal-regulated kinase (Erk1/2) phosphorylation, as well as inhibition of c-Jun N-terminal kinases (JNK) and the signal transducer and activator of transcription-3 (STAT3) signal transduction. These findings first revealed the anti-remodeling potential of ZDHXB-101 lead in chronic airway disease.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Antiasmáticos/química , Antiasmáticos/farmacología , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Epóxido Hidrolasas/metabolismo , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos ICR , Factor de Transcripción STAT3/antagonistas & inhibidoresRESUMEN
Cigarette smoke (CS) is a major risk factor for the development of lung cancer and chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) commonly coexists in lung cancer and COPD. CS triggers many factors including matrix metalloproteinases (MMPs) production, contributing to EMT progression in the lungs. Here, how Shp2 signaling regulates the CS-induced MMP-9 production and EMT progression were investigated in mouse lungs and in pulmonary epithelial cell cultures (NCI-H292) found CS induced MMP-9 production, EMT progression (increased vimentin and α-SMA; decreased E-cadherin) and collagen deposition in lung tissues; cigarette smoke extract (CSE) induced MMP-9 production and EMT-related phenotypes in NCI-H292 cells, which were partially prevented by Shp2 KO/KD or Shp2 inhibition. The CSE exposure induced EMT phenotypes were suppressed by MMP-9 inhibition. Recombinant MMP-9 induced EMT, which was prevented by MMP-9 inhibition or Shp2 KD/inhibition. Mechanistically, CS and CSE exposure resulted in ERK1/2, JNK and Smad2/3 phosphorylation, which were suppressed by Shp2 KO/KD/inhibition. Consequentially, the CSE exposure-induced MMP-9 production and EMT progression were suppressed by ERK1/2, JNK and Smad2/3 inhibitors. Thus, CS induced MMP-9 production and EMT resulted from activation of Shp2/ERK1/2/JNK/Smad2/3 signaling pathways. Our study contributes to the underlying mechanisms of pulmonary epithelial structural changes in response to CS, which may provide novel therapeutic solutions for treating associated diseases, such as COPD and lung cancer.
Asunto(s)
Fumar Cigarrillos/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Metaloproteinasa 9 de la Matriz/biosíntesis , Proteína Tirosina Fosfatasa no Receptora Tipo 11/biosíntesis , Animales , Línea Celular Tumoral , Fumar Cigarrillos/efectos adversos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Exposición por Inhalación/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patologíaRESUMEN
BACKGROUND: The second-generation CD19-chimeric antigen receptor (CAR)-T co-stimulatory domain that is commonly used in clinical practice is CD28 or 4-1BB. Previous studies have shown that the persistence of CAR-T in the 4-1BB co-stimulatory domain appears to be longer. METHODS: The expression profile data of GSE65856 were obtained from GEO database. After data preprocessing, the differentially expressed genes (DEGs) between the mock CAR versus CD19-28z CAR T cells and mock CAR versus CD19-BBz CAR T cells were identified using the limma package. Subsequently, functional enrichment analysis of DEGs was performed using the DAVID tool. Then, the protein-protein international (PPI) network of these DEGs was visualized by Cytoscape, and the miRNA-target gene-disease regulatory networks were predicted using Webgestal. RESULTS: A total of 18 common DEGs, 6 CD19-28z specific DEGs and 206 CD19-BBz specific DEGs were identified. Among CD19-28z specific DEGs, down-regulated PAX5 might be an important node in the PPI network and could be targeted by miR-496. In CD19-BBz group, JUN was a hub node in the PPI network and involved in the regulations of miR520D - early growth response gene 3 (EGR3)-JUN and mi-R489-AT-rich interaction domain 5A (ARID5A)-JUN networks. CONCLUSION: The 4-1BB co-stimulatory domain might play in important role in the treatment of CAR-T via miR-520D-EGR3-JUN and miR489-ARID5A-JUN regulation network, while CD28 had a negative effect on CAR-T treatment.
Asunto(s)
Antígenos CD28/metabolismo , Biología Computacional/métodos , Receptores Quiméricos de Antígenos/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Antineoplásicos/uso terapéutico , Bases de Datos Factuales , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Mapas de Interacción de Proteínas/genética , Receptores Quiméricos de Antígenos/química , Resultado del Tratamiento , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/químicaRESUMEN
AIM: To determine the characteristics of brain development in children with nocturnal enuresis, we investigated the intensity of functional connectivity both among the nodes in the brain network and between the two hemispheres of the brain. MATERIALS AND METHODS: Twenty-three children with nocturnal enuresis (NE) and an equal number of normal children were examined using resting-state functional magnetic resonance imaging (fMRI) scans. Data analysis was done via the degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) approaches. Moreover, we compared the children's psychological status by utilizing the self-concept scale. RESULTS: In four areas of the brain, the the DC values of the NE group were obviously lower than that of the normal controls. These four areas were the posterior cerebellar lobe, anterior cingulate cortex (ACC), medial frontal gyrus, and superior left temporal gyrus (P < 0.05, after correction). We also found two brain areas where the VMHC values of the NE group were obviously lower than that of the normal controls. The two groups were the cerebellar lobe and the anterior cingulate cortex (ACC) [P < 0.05, after correction]. A psychological comparison between the children with NE and that in the normal group on the self-concept scale was also performed. The scores of the children with NE were lower than normal controls regarding behavior, appearance and property, anxiety, gregariousness, happiness, and satisfaction (P < 0.05). CONCLUSIONS: These findings provide evidence of the deficit of urination control in children with NE. Furthermore, through the methods of DC and VMHC, which are based on functional connectivity, it was also possible to explain why children with NE often have the concomitant symptoms of attention, control, and memory problems. The analysis of the self-concept scale suggests that children with NE lack self-confidence.
Asunto(s)
Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Enuresis Nocturna/diagnóstico por imagen , Personalidad , Mapeo Encefálico , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Enuresis Nocturna/psicología , Satisfacción Personal , AutoimagenRESUMEN
Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation.
Asunto(s)
Fumar Cigarrillos/efectos adversos , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuropéptidos/metabolismo , Neumonía/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Fumar Cigarrillos/genética , Fumar Cigarrillos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inflamación/etiología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Ratones , Proteína Quinasa 3 Activada por Mitógenos/genética , Neuropéptidos/genética , Infiltración Neutrófila/genética , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/etiología , Neumonía/genética , Neumonía/patología , Factor de Transcripción STAT3/genética , Proteína de Unión al GTP rac1/genéticaRESUMEN
OBJECTIVE: To evaluate the effects of school entrance age on cognition and behaviors in children with attention deficit hyperactivity disorder (ADHD) using mathematical event-related potential (ERP), behavioral test, and Conners Parent Symptom Questionnaire (PSQ). METHODS: Fifty-eight ADHD children aged 7-12 years were enrolled and classified into older age and younger age groups according to the school entrance age (n=29â each). The children in the older age group were admitted at an age of 6 years and 6 months to 6 years and 11 months, and those in the younger age group were admitted at an age of 6 years to 6 years and 5 months. The ERP with a mathematical task was used to detect the difference in brain electrical activity between the two groups, and the behavioral test results were compared. The children's parents were asked to complete the PSQ, and the scores on each subscale were compared. RESULTS: The ERP detection showed that the older age group had a significantly higher P2 amplitude for wrong answers than the younger age group (10.9±5.0 µv vs 8.5±3.6 µv; P<0.05). The younger age group had a significantly shorter time of response to wrong answers than the older age group (619±340â ms vs 870±418â ms; P<0.05). The scores on the subscales of learning problems and impulse-hyperactivity of PSQ were significantly higher in the younger age group than in the older age group (P<0.05). CONCLUSIONS: School entrance age can affect cognition and behaviors in children with ADHD, and the ADHD children with a younger school entrance age have an obvious defect in executive function, especially the function of error detection, which leads to the prominent problems in impulse-hyperactivity and learning.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Potenciales Evocados/fisiología , Factores de Edad , Trastorno por Déficit de Atención con Hiperactividad/psicología , Niño , Conducta Infantil , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVE: To investigate the cognitive characteristics in early school-age children with attention deficit hyperactivity disorder (ADHD) using event-related potential (ERP) and Achenbach Child Behavior Checklist (CBCL), as well as the correlation between ERP and behavioral problems. METHODS: A total of 22 children aged 6-7 years with ADHD and 19 healthy children matched by age were enrolled. Continue Performance Test-AX (CPT-AX) was performed for ERP test. The amplitude and latency of N2 and P3 of Go and Nogo were compared. The CBCL was completed by the parents, and the correlation between behavioral factors and ERP was analyzed. RESULTS: The ADHD group had a significantly higher number of ERP omissions than the normal control group (10±8 vs 5±4; P<0.05), while the reaction time and number of commission errors showed no significant differences between the two groups (P>0.05). The ADHD group showed a significantly lower Go-N2 amplitude than the normal control group (-8±5â µV vs -10±4â µV; P<0.05). In the ADHD group, the detection rates of hyperactivity, attack, and discipline violation were 27%, 27% and 9% respectively. The scores on attack and discipline violation subscales were negatively correlated with the Go-N2 amplitude of ERP (r=-0.43 and -0.48 respectively; P<0.05), while the score on hyperactivity subscale was positively correlated with the latency of Go-P3 (r=0.50, P<0.05). CONCLUSIONS: The early school-age children with ADHD show the tendency to the impairment of attention/executive function, but the inhibition function defect has not been noted. In early school-age children with ADHD, the behavioral problems such as hyperactivity, attack, and discipline violation are associated with ERP.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastornos de la Conducta Infantil/etiología , Potenciales Evocados/fisiología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Niño , HumanosRESUMEN
BACKGROUND: Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. METHODS: EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. RESULTS: Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-ß1 release. Blocking TGF-ß pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-ß1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-ß1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. CONCLUSIONS AND GENERAL SIGNIFICANCE: Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer.
Asunto(s)
Transición Epitelial-Mesenquimal , Neuropéptidos/fisiología , Nicotiana/efectos adversos , Alveolos Pulmonares/patología , Humo/efectos adversos , Proteína de Unión al GTP rac1/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteína Smad2/fisiología , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/biosíntesisRESUMEN
BACKGROUND: Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug. METHODS: The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice. RESULTS: AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger - N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10-40mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index. CONCLUSIONS AND GENERAL SIGNIFICANCE: These data support development of AD-1 as a potential agent for lung cancer therapy.
Asunto(s)
Antineoplásicos/farmacología , Ginsenósidos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Masculino , RatonesRESUMEN
Cigarette smoke (CS), the major cause of chronic obstructive pulmonary disease, contains a variety of oxidative components that were implicated in the regulation of Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) activity. However, the contribution of Shp2 enzyme to chronic obstructive pulmonary disease pathogenesis remains unclear. We investigated the role of Shp2 enzyme in blockading CS-induced pulmonary inflammation. Shp2 levels were assessed in vivo and in vitro. Mice (C57BL/6) or pulmonary epithelial cells (NCI-H292) were exposed to CS or cigarette smoke extract (CSE) to induce acute injury and inflammation. Lungs of smoking mice showed increased levels of Shp2, compared with those of controls. Treatment of lung epithelial cells with CSE showed elevated levels of Shp2 associated with the increased release of IL-8. Selective inhibition or knockdown of Shp2 resulted in decreased IL-8 release in response to CSE treatment in pulmonary epithelial cells. In comparison with CS-exposed wild-type mice, selective inhibition or conditional knockout of Shp2 in lung epithelia reduced IL-8 release and pulmonary inflammation in CS-exposed mice. In vitro biochemical data correlate CSE-mediated IL-8 release with Shp2-regulated epidermal growth factor receptor/Grb-2-associated binders/MAPK signaling. Our data suggest an important role for Shp2 in the pathological alteration associated with CS-mediated inflammation. Shp2 may be a potential target for therapeutic intervention for inflammation in CS-induced pulmonary diseases.
Asunto(s)
Neumonía/inmunología , Neumonía/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Fumar/efectos adversos , Fumar/patología , Productos de Tabaco/toxicidad , Enfermedad Aguda , Animales , Línea Celular , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/prevención & control , Interleucina-8/metabolismo , Interleucina-8/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neumonía/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Fumar/metabolismoRESUMEN
OBJECTIVE: To explore the neural mechanisms of attention-deficit hyperactivity disorder (ADHD) through analyzing the intensity of functional connection between bilateral hemispheres of children with ADHD by resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: The approach of voxel-mirrored homotopic connectivity (VMHC) was employed to analyze 31 school-age and 31 ADHD children by rs-fMRI scans. RESULTS: Positively activated brain regions were visualized when comparing ADHD and normal children, suggesting that ADHD children's VMHC scores were higher in bilateral frontal lobe (t = 5.81), bilateral occipital lobe (t = 5.82) and bilateral cerebellar posterior lobe (t = 6.17). Statistically significant differences existed between two groups (FDR correction, Q<0.01). CONCLUSIONS: The increased intensity of functional connection between bilateral prefrontal lobes in children with ADHD reflects attention disorder and leads to a decline of working memory . The strengthening of bilateral occipital lobes slows down memory process. And the increased intensity of cerebellar connections may damage neural circuits and aggravate ADHD symptoms.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico , Niño , Humanos , Memoria a Corto PlazoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Di-Long (Pheretima vulgaris) is a classic animal sourced traditional Chinese medicine. It has been used for the treatment of joint inflammation and arthralgia for over two thousand years due to its effects of Tong-Luo-Zhi-Tong (dredging collaterals and alleviating pain). Our previous study showed that Chinese medicine Di-Long has significant anti-rheumatoid arthritis (RA) effects. AIM OF THE STUDY: Considering Di-Long as a potential source of active compounds with specific anti-RA therapeutic effects, this research was to obtain the anti-RA target-specific active fraction from Di-Long extracts (DL), and to further explore the chemical basis and verify the anti-RA mechanism of this active fraction. MATERIALS AND METHODS: Transcriptomic was applied to obtain the main anti-RA targets of DL on human RA fibroblast-like synoviocytes (FLS) and validated by qPCR. The target-corresponding active fraction was isolated from DL by ethanol precipitation and gel chromatography, and analyzed by nanoliter chromatography-mass spectrometry. Anti-RA effects of this active fraction was investigated by collagen-induced arthritis (CIA) in mice, and anti-RA mechanisms were verified in cocultured model of rat FLS and peripheral blood lymphocytes. RESULTS: We confirmed that CXCL10/CXCR3 was the main anti-RA target of DL. The active fraction - A (2182 - 890 Da) was isolated from DL based on its CXCL10 inhibiting effects in RA-FLS. Fraction A contains 195 peptides (192 were newly discovered), 26 of which might be bioactive and were considered to be the chemical basis of its anti-RA effects. Fraction A significantly ameliorated the joint destruction and overall inflammation in CIA mice, and downregulated CXCR3 expression in mice joint. Fraction A inhibited the chemotaxis of Th-cells in rat peripheral blood lymphocytes towards the TNF-α-induced rat FLS through CXCL10/CXCR3 pathway. CONCLUSIONS: Our work indicated that active fraction from DL containing small peptides exhibits promising therapeutic effects for RA through inhibiting CXCL10/CXCR3 chemotaxis.
Asunto(s)
Antirreumáticos , Artritis Experimental , Artritis Reumatoide , Quimiocina CXCL10 , Quimiotaxis , Receptores CXCR3 , Membrana Sinovial , Animales , Receptores CXCR3/metabolismo , Quimiocina CXCL10/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Masculino , Antirreumáticos/farmacología , Antirreumáticos/aislamiento & purificación , Ratas , Humanos , Quimiotaxis/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Ratones , Ratones Endogámicos DBA , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY: This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS: The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS: DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.