Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8000): 792-798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297125

RESUMEN

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Asunto(s)
Amoníaco , Producción de Cultivos , Fertilizantes , Amoníaco/análisis , Amoníaco/metabolismo , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/tendencias , Conjuntos de Datos como Asunto , Ecosistema , Fertilizantes/efectos adversos , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Triticum/metabolismo , Zea mays/metabolismo , Cambio Climático/estadística & datos numéricos
2.
Environ Sci Technol ; 58(19): 8326-8335, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696616

RESUMEN

China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Material Particulado , China , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire , Humanos
3.
Environ Sci Technol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485962

RESUMEN

Ozone pollution is profoundly modulated by meteorological features such as temperature, air pressure, wind, and humidity. While many studies have developed empirical models to elucidate the effects of meteorology on ozone variability, they predominantly focus on local weather conditions, overlooking the influences from high-altitude and broader regional meteorological patterns. Here, we employ convolutional neural networks (CNNs), a technique typically applied to image recognition, to investigate the influence of three-dimensional spatial variations in meteorological fields on the daily, seasonal, and interannual dynamics of ozone in Shenzhen, a major coastal urban center in China. Our optimized CNNs model, covering a 13° × 13° spatial domain, effectively explains over 70% of daily ozone variability, outperforming alternative empirical approaches by 7 to 62%. Model interpretations reveal the crucial roles of 2-m temperature and humidity as primary drivers, contributing 16% and 15% to daily ozone fluctuations, respectively. Regional wind fields account for up to 40% of ozone changes during the episodes. CNNs successfully replicate observed ozone temporal patterns, attributing -5-6 µg·m-3 of interannual ozone variability to weather anomalies. Our interpretable CNNs framework enables quantitative attribution of historical ozone fluctuations to nonlinear meteorological effects across spatiotemporal scales, offering vital process-based insights for managing megacity air quality amidst changing climate regimes.

4.
Environ Sci Technol ; 58(12): 5430-5441, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38471097

RESUMEN

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Temperatura , Monitoreo del Ambiente/métodos , China
5.
Environ Sci Technol ; 57(9): 3722-3732, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36826460

RESUMEN

Indoor PM2.5, particulate matter no more than 2.5 µm in aerodynamic equivalent diameter, has very high spatiotemporal variabilities; and exploring the key factors influencing the variabilities is critical for purifying air and protecting human health. Here, we conducted a longer-term field monitoring campaign using low-cost sensors and evaluated inter- and intra-household PM2.5 variations in rural areas where energy or stove stacking is common. Household PM2.5 varied largely across different homes but also within households. Using generalized linear models and dominance analysis, we estimated that outdoor PM2.5 explained 19% of the intrahousehold variation in indoor daily PM2.5, whereas factors like the outdoor temperature and indoor-outdoor temperature difference that was associated with energy use directly or indirectly, explained 26% of the temporal variation. Inter-household variation was lower than intrahousehold variation. The inter-household variation was strongly associated with distinct internal sources, with energy-use-associated factors explaining 35% of the variation. The statistical source apportionment model estimated that solid fuel burning for heating contributed an average of 31%-55% of PM2.5 annually, whereas the contribution of sources originating from the outdoors was ≤10%. By replacing raw biomass or coal with biomass pellets in gasifier burners for heating, indoor PM2.5 could be significantly reduced and indoor temperature substantially increased, providing thermal comforts in addition to improved air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Culinaria , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente
6.
Environ Sci Technol ; 57(23): 8467-8475, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37256786

RESUMEN

Residential emissions significantly contribute to air pollution. To address this issue, a clean heating campaign was implemented to replace coal with electricity or natural gas among 13.9 million rural households in northern China. Despite great success, the cost-benefits and environmental equity of this campaign have never been fully investigated. Here, we modeled the environmental and health benefits, as well as the total costs of the campaign, and analyzed the inequality and inequity. We found that even though the campaign decreased only 1.1% of the total energy consumption, PM2.5 emissions and PM2.5 exposure experienced 20% and 36% reduction, respectively, revealing the amplification effects along the causal pathway. Furthermore, the number of premature deaths attributable to residential emissions reduced by 32%, suggesting that the campaign was highly beneficial. Governments and residents shared the cost of 2,520 RMB/household. However, the benefits and the costs were unevenly distributed, as the residents in mountainous areas were not only less benefited from the campaign but also paid more because of the higher costs, resulting in a notably lower cost-effectiveness. Moreover, villages in less developed areas tended to choose natural gas with a lower initial investment but a higher total cost (2,720 RMB/household) over electricity (2,190 RMB/household). With targeted investment and subsidies in less developed areas and the promotion of electricity and other less expensive alternatives, the multidevelopment goals of improved air quality, reduced health impacts, and reduced inequity in future clean heating interventions could be achieved.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Análisis Costo-Beneficio , Material Particulado/análisis , Calefacción , Gas Natural , Contaminación del Aire/análisis , China , Contaminantes Atmosféricos/análisis
7.
Environ Sci Technol ; 57(50): 21295-21305, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064660

RESUMEN

The chemical industry is a significant source of nonmethane volatile organic compounds (NMVOCs), pivotal precursors to ambient ozone (O3), and secondary organic aerosol (SOA). Despite their importance, precise estimation of these emissions remains challenging, impeding the implementation of NMVOC controls. Here, we present the first comprehensive plant-level assessment of NMVOC emissions from the chemical industry in China, encompassing 3461 plants, 127 products, and 50 NMVOC compounds from 2010 to 2019. Our findings revealed that the chemical industry in China emitted a total of 3105 (interquartile range: 1179-8113) Gg of NMVOCs in 2019, with a few specific products accounting for the majority of the emissions. Generally, plants engaged in chemical fibers production or situated in eastern China pose a greater risk to public health due to their higher formation potentials of O3 and SOA or their proximity to residential areas or both. We demonstrated that targeting these high-risk plants for emission reduction could enhance health benefits by 7-37% per unit of emission reduction on average compared to the current situation. Consequently, this study provides essential insights for developing effective plant-specific NMVOC control strategies within China's chemical industry.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Industria Química , Monitoreo del Ambiente , Ozono/análisis , China , Aerosoles/análisis , Plantas
8.
Environ Sci Technol ; 57(33): 12341-12350, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552529

RESUMEN

As the main anthropogenic source in open seas and coastal areas, ship emissions impact the climate, air quality, and human health. The latest marine fuel regulation with a sulfur content limit of 0.5% went into effect globally on January 1, 2020. Investigations of ship emissions after fuel switching are necessary. In this study, online field measurements at an urban coastal site and modeling simulations were conducted to detect the impact of ship emissions on air quality in the Greater Bay Area (GBA) in China under new fuel regulation. By utilizing a high mass-resolution single particle mass spectrometer, the vanadium(V) signal was critically identified and was taken as a robust indicator for ship-emitted particles (with relative peak area > 0.1). The considerable number fractions of high-V particles (up to 30-40% during ship plumes) indicated that heavy fuel oils via simple desulfurization or blending processes with low-sulfur fuels were extensively used in the GBA to meet the global 0.5% sulfur cap. Our results showed that ship-emitted particulate matter and NOx contributed up to 21.4% and 39.5% to the ambient, respectively, in the summertime, significantly affecting the air quality in the GBA. The sea-land breeze circulation also played an important role in the transport pattern of ship-emitted pollutants in the GBA.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Navíos , Contaminación del Aire/análisis , Material Particulado/análisis , China , Azufre
9.
Environ Sci Technol ; 57(43): 16477-16488, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37867432

RESUMEN

The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminación del Aire/análisis , Hierro , Material Particulado/análisis , Acero , Contaminantes Atmosféricos/análisis , China
10.
Proc Natl Acad Sci U S A ; 117(14): 7702-7711, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209665

RESUMEN

Increased human water use combined with climate change have aggravated water scarcity from the regional to global scales. However, the lack of spatially detailed datasets limits our understanding of the historical water use trend and its key drivers. Here, we present a survey-based reconstruction of China's sectoral water use in 341 prefectures during 1965 to 2013. The data indicate that water use has doubled during the entire study period, yet with a widespread slowdown of the growth rates from 10.66 km3⋅y-2 before 1975 to 6.23 km3⋅y-2 in 1975 to 1992, and further down to 3.59 km3⋅y-2 afterward. These decelerations were attributed to reduced water use intensities of irrigation and industry, which partly offset the increase driven by pronounced socioeconomic development (i.e., economic growth, population growth, and structural transitions) by 55% in 1975 to 1992 and 83% after 1992. Adoptions for highly efficient irrigation and industrial water recycling technologies explained most of the observed reduction of water use intensities across China. These findings challenge conventional views about an acceleration in water use in China and highlight the opposing roles of different drivers for water use projections.


Asunto(s)
Desaceleración , Abastecimiento de Agua , Agua , China , Geografía , Humanos , Factores Socioeconómicos
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(3): 382-389, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37365867

RESUMEN

Objective To explore the overall level,distribution characteristics,and differences in household fine particulate matter (PM2.5) pollution caused by fuel burning in urban and rural areas in China. Methods The relevant articles published from 1991 to 2021 were retrieved and included in this study.The data including the average concentration of household PM2.5 and urban and rural areas were extracted,and the stoves and fuel types were reclassified.The average concentration of PM2.5 in different areas was calculated and analyzed by nonparametric test. Results The average household PM2.5 concentration in China was (178.81±249.91) µg/m3.The mean household PM2.5 concentration was higher in rural areas than in urban areas[(206.08±279.40) µg/m3 vs. (110.63±131.16) µg/m3;Z=-5.45,P<0.001] and higher in northern areas than in southern areas[(224.27±301.66) µg/m3 vs.(130.11±140.61) µg/m3;Z=-2.38,P=0.017].The north-south difference in household PM2.5 concentration was more significant in rural areas than in urban areas[(324.19±367.94) µg/m3 vs.(141.20±151.05) µg/m3,χ2=-5.06,P<0.001].The PM2.5 pollution level showed differences between urban and rural households using different fuel types (χ2=92.85,P<0.001),stove types (χ2=74.42,P<0.001),and whether they were heating (Z=-4.43,P<0.001).Specifically,rural households mainly used solid fuels (manure,charcoal,coal) and traditional or improved stoves,while urban households mainly used clean fuels (gas) and clean stoves.The PM2.5 concentrations in heated households were higher than those in non-heated households in both rural and urban areas (Z=-4.43,P<0.001). Conclusions The household PM2.5 pollution caused by fuel combustion in China remains a high level.The PM2.5 concentration shows a significant difference between urban and rural households,and the PM2.5 pollution is more serious in rural households.The difference in the household PM2.5 concentration between urban and rural areas is more significant in northern China.PM2.5 pollution in the households using solid fuel,traditional stoves,and heating is serious,and thus targeted measures should be taken to control PM2.5 pollution in these households.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Humanos , Material Particulado/análisis , Contaminación del Aire Interior/análisis , Culinaria , Exposición a Riesgos Ambientales/análisis , China , Población Rural
12.
Environ Sci Technol ; 56(10): 6243-6252, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35482889

RESUMEN

We developed a regional atmospheric transport model for microplastics (MPs, 10 µm to 5 mm in size) over Asia and the adjacent Pacific and Indian oceans, accounting for MPs' size- and shape-dependent aerodynamics. The model was driven by tuned atmospheric emissions of MPs from the land and the ocean, and the simulations were evaluated against coastal (n = 19) and marine (n = 56) observations. Our tuned atmospheric emissions of MPs from Asia and the adjacent oceans were 310 Gg y-1 (1 Gg = 1 kton) and 60 Gg y-1, respectively. MP lines and fragments may be transported in the atmosphere >1000 km; MP pellets in our model mostly deposited near-source. We estimated that 1.4% of the MP mass emitted into the Asian atmosphere deposited into the oceans via atmospheric transport; the rest deposited over land. The resulting net atmospheric transported MP flux from Asia into the oceans was 3.9 Gg y-1, twice as large as a previous estimate for the riverine-transported MP flux from Asia into the oceans. The uncertainty of our simulated atmospheric MP budget was between factors of 3 and 7. Our work highlighted the impacts of the size and morphology on the aerodynamics of MPs and the importance of atmospheric transport in the source-to-sink relationship of global MP pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Asia , Monitoreo del Ambiente , Océano Índico , Plásticos , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Technol ; 56(4): 2225-2235, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35119844

RESUMEN

North China is among the most polluted regions in the country, and human exposure to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) in this region has led to severe health consequences. The region has also benefited the most from emission reductions in recent years. It is of interest to understand to what extent and through which paths emissions from different sectors cause adverse health impacts. Here, we present the results of a full evaluation of the health benefits of emission control actions implemented in recent years based on segregated emission inventories with an emphasis on residential emissions. Two major causal paths, one from residential emissions to indoor air pollution, exposure, and premature deaths, and the other from nonresidential emissions to ambient air pollution and psychophysical impacts, were identified and quantified. From 2014 to 2019, both ambient (33%) and indoor (39%) PM2.5 decreased significantly, leading to decreasing trends in exposure (36%), premature deaths (10%), and psychophysical impacts (21%). The Air Pollution Prevention and Control Action Plan, the Clean Heating Campaign, and spontaneous residential shifts to clean energy contributed significantly to these reductions when the effects of other drivers, such as population and economic growth, were excluded.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/prevención & control , China/epidemiología , Humanos , Material Particulado/análisis
14.
Environ Sci Technol ; 56(7): 3894-3904, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35319880

RESUMEN

Gaseous and particulate chlorine species play an important role in modulating tropospheric oxidation capacity, aerosol water uptake, visibility degradation, and human health. The lack of recent global continental chlorine emissions has hindered modeling studies of the role of chlorine in the atmosphere. Here, we develop a comprehensive global emission inventory of gaseous HCl and particulate Cl- (pCl), including 35 sources categorized in six source sectors based on published up-to-date activity data and emission factors. These emissions are gridded at a spatial resolution of 0.1° × 0.1° for the years 1960 to 2014. The estimated emissions of HCl and pCl in 2014 are 2354 (1661-3201) and 2321 (930-3264) Gg Cl a-1, respectively. Emissions of HCl are mostly from open waste burning (38%), open biomass burning (19%), energy (19%), and residential (13%) sectors, and the major sources classified by fuel type are combustion of waste (43%), biomass (32%), and coal (25%). Emissions of pCl are mostly from biofuel (29%) and open biomass burning processes (44%). The sectoral and spatial distributions of HCl and pCl emissions are very heterogeneous along the study period, and the temporal trends are mainly driven by the changes in emission factors, energy intensity, economy, and population.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Cloruros , Carbón Mineral , Monitoreo del Ambiente , Humanos , Ácido Clorhídrico , Material Particulado/análisis
15.
Proc Natl Acad Sci U S A ; 116(34): 16773-16780, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383761

RESUMEN

In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and 26 other municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with fewer than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190 to 230) µg/m3 to 125 (99 to 150) µg/m3 The population-weighted PM2.5 concentrations can be reduced from 140 µg/m3 in 2014 to 78 µg/m3 or 61 µg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because ∼90% of daily exposure of the rural population is attributable to indoor air pollution. Women benefit more than men.


Asunto(s)
Contaminación del Aire/análisis , Fuentes Generadoras de Energía , Composición Familiar , Combustibles Fósiles , Políticas , China , Electricidad , Exposición a Riesgos Ambientales , Geografía , Material Particulado/análisis , Factores de Tiempo
16.
Environ Sci Technol ; 55(2): 882-892, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33400508

RESUMEN

On-road emissions sources degrade air quality, and these sources have been highly regulated. Epidemiological and environmental justice studies often use road proximity as a proxy for traffic-related air pollution (TRAP) exposure, and other studies employ air quality models or satellite observations. To assess these metrics' abilities to reproduce observed near-road concentration gradients and changes over time, we apply a hierarchical linear regression to ground-based observations, long-term air quality model simulations using Community Multiscale Air Quality (CMAQ), and satellite products. Across 1980-2019, observed TRAP concentrations decreased, and road proximity was positively correlated with TRAP. For all pollutants, concentrations decreased fastest at locations with higher road proximity, resulting in "flatter" concentration fields in recent years. This flattening unfolded at a relatively constant rate for NOx, whereas the flattening of CO concentration fields has slowed. CMAQ largely captures observed spatial-temporal NO2 trends across 2002-2010 but overstates the relationships between CO and elemental carbon fine particulate matter (EC) road proximity. Satellite NOx measures overstate concentration reductions near roads. We show how this perspective provides evidence that California's on-road vehicle regulations led to substantial decreases in NO2, NOx, and EC in California, with other states that adopted California's light-duty automobile standards showing mixed benefits over states that did not adopt these standards.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estados Unidos , Emisiones de Vehículos/análisis
17.
Environ Sci Technol ; 55(23): 15625-15636, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34787397

RESUMEN

Ozone (O3) isopleths describe the nonlinear responses of O3 concentrations to changes in nitrogen oxides (NOX) and volatile organic compounds (VOCs) and thus are pivotal to the determination of O3 control requirements. In this study, we innovatively use the Community Multiscale Air Quality model with the high-order decoupled direct method (CMAQ-HDDM) to simulate O3 pollution of China in 2017 and derive O3 isopleths for individual cities. Our simulation covering the entire China Mainland suggests severe O3 pollution as 97% of the residents experienced at least 1 day, in 2017, in excess of Chinese Level-II Ambient Air Quality Standards for O3 as 160 µg·m-3 (81.5 ppbV equally). The O3 responses to emissions of precursors vary widely across individual cities. Densely populated metropolitan areas such as Jing-Jin-Ji, Yangtze River Delta, and Pearl River Delta are following NOX-saturated regimes, where a small amount of NOX reduction increases O3. Ambient O3 pollution in the eastern region generally is limited by VOCs, while in the west by NOX. The city-specific O3 isopleths generated in this study are instrumental in forming hybrid and differentiated strategies for O3 abatement in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
18.
Environ Sci Technol ; 55(21): 14567-14575, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672562

RESUMEN

Rural residential energy switching from solid fuels to electricity and natural gas has resulted in substantial health benefits in China. Here, we quantitatively estimated the environmental and health benefits of stove upgrading, energy switching, and the interaction of stove upgrading and energy switching in rural mainland China during the period of 1980-2014. Driven by government intervention, technical progress, and socioeconomic development, domestic stoves have been upgraded from a domination of open-fire and traditional stoves to energy-saving, clean stoves, and gas range/electric stoves. Furthermore, stove upgrading significantly contributed to the overall reductions in PM2.5 emissions (25%), ambient and indoor PM2.5 concentrations (49 and 28%), population exposure (31%), and premature deaths (37%) attributable to residential emissions. The interaction between stove upgrading and energy switching resulted in an additional 15% reduction in premature deaths. The influences of the residential sector and the beneficial effects of stove upgrading and energy switching are magnified along the causal path from emissions to health impacts. The overall benefit of the transition in residential energy would be substantially underestimated without considering stove upgrading.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Artículos Domésticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , China , Culinaria , Humanos , Material Particulado/análisis , Población Rural
19.
Environ Sci Technol ; 55(15): 10300-10309, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34296598

RESUMEN

Atmospheric black carbon (BC) concentrations are governed by both emissions and meteorological conditions. Distinguishing these effects enables quantification of the effectiveness of emission mitigation actions by excluding meteorological effects. Here, we develop reduced-form models in both direct (RFDMs) and inverse (RFIMs) modes to estimate ambient BC concentrations. The models were developed based on outputs from multiyear simulations under three conditional scenarios with realistic or fixed emissions and meteorological conditions. We established a set of probabilistic functions (PFs) to quantify the meteorological influences. A significant two-way linear relationship between multiyear annual emissions and mean ambient BC concentrations was revealed at the grid cell scale. The correlation between them was more significant at grid cells with high emission densities. The concentrations and emissions at a given grid cell are also significantly correlated with emissions and concentrations of the surrounding areas, respectively, although to a lesser extent. These dependences are anisotropic depending on the prevailing winds and source regions. The meteorologically induced variation at the monthly scale was significantly higher than that at the annual scale. Of the major meteorological parameters, wind vectors, temperature, and relative humidity were found to most significantly affect variation in ambient BC concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Meteorología , Hollín/análisis , Viento
20.
Environ Sci Technol ; 55(11): 7316-7326, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33977718

RESUMEN

Coal abatement actions for pollution reduction often target total coal consumption. The health impacts of coal uses, however, vary extensively among sectors. Here, we modeled the sectorial contributions of coal uses to emissions, outdoor and indoor PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 mm) concentrations, exposures, and health outcomes in China from 1970 to 2014. We show that in 2014, residential coal accounted for 2.9% of total energy use but 34% of premature deaths associated with PM2.5 exposure, showing that effects were magnified substantially along the causal path. The number of premature deaths attributed to unit coal consumption in the residential sector was 40 times higher than that in the power and industrial sectors. Emissions of primary PM2.5 were more important than secondary aerosol precursors in terms of health consequences, and indoor exposure accounted for 97% and 91% of total premature deaths attributable to PM2.5 from coal combustion in 1974 and 2014, respectively. Our assessment raises a critical challenge in the switching of residential coal uses to effectively mitigate PM2.5 exposure in the Chinese population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Carbón Mineral/análisis , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA