RESUMEN
BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Imiquimod/farmacología , Imiquimod/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Inmunidad , Microambiente TumoralRESUMEN
Client-perpetrated violence (CPV) can lead to worse health consequences. However, little attention is paid to the CPV experience among Chinese female sex workers. Our study aimed to assess the association between CPV experience and health risk behaviors among FSWs in China. Data used in this study was from the baseline interviewer-administered questionnaire of a cluster randomized controlled trial conducted in June-October 2020. The collected information included sociodemographic characteristics, HIV/STI symptoms, number of clients, quality of the workplace, and past CPV experience. The association between violence experience and potential HIV/STI risk factors was explored using multivariable regression. Among 480 FSWs who participated in this study, 13.5% experienced CPV in the past. Compared to those who had never experienced CPV, FSWs who experienced CPV were more likely to report previous STI-related symptoms (aOR 4.29, 95% CI 1.73-10.64), more than 15 clients in the past month (aOR 2.56, 95% CI 1.18-5.52), a history of HIV testing (aOR 2.99, 95% CI 1.64-5.46), and work at low-tier workplaces (aOR 2.09, 95% CI 1.18-3.70). Overall, CPV prevalence is not low among Chinese FSWs, and there are some associations with HIV/STI risk factors; a future intervention targeting CPV in HIV/STI prevention programs is needed.
Asunto(s)
Infecciones por VIH , Trabajadores Sexuales , Enfermedades de Transmisión Sexual , Femenino , Humanos , Infecciones por VIH/prevención & control , Enfermedades de Transmisión Sexual/epidemiología , Estudios Transversales , Trabajo Sexual , Violencia , China , Factores de RiesgoRESUMEN
Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.
Asunto(s)
Elementos Silenciadores Transcripcionales , Pez Cebra , Animales , Pez Cebra/genética , Animales Modificados Genéticamente , Regiones Promotoras GenéticasRESUMEN
Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Ratones Endogámicos C57BL , Piroptosis , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Ratones , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Piroptosis/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/inmunología , Células Th17/efectos de los fármacosRESUMEN
Compacted heterochromatin blocks are prevalent in differentiated cells and present a barrier to cellular reprogramming. It remains obscure how heterochromatin remodeling is orchestrated during cell differentiation. Here we find that the evolutionarily conserved homeodomain transcription factor Prospero (Pros)/Prox1 ensures neuronal differentiation by driving heterochromatin domain condensation and expansion. Intriguingly, in mitotically dividing Drosophila neural precursors, Pros is retained at H3K9me3+ pericentromeric heterochromatin regions of chromosomes via liquid-liquid phase separation (LLPS). During mitotic exit of neural precursors, mitotically retained Pros recruits and concentrates heterochromatin protein 1 (HP1) into phase-separated condensates and drives heterochromatin compaction. This establishes a transcriptionally repressive chromatin environment that guarantees cell-cycle exit and terminal neuronal differentiation. Importantly, mammalian Prox1 employs a similar "mitotic-implantation-ensured heterochromatin condensation" strategy to reinforce neuronal differentiation. Together, our results unveiled a new paradigm whereby mitotic implantation of a transcription factor via LLPS remodels H3K9me3+ heterochromatin and drives timely and irreversible terminal differentiation.
Asunto(s)
Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Heterocromatina/metabolismo , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Transición de Fase , Factores de Transcripción/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Extracción Líquido-Líquido , Masculino , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Nucleosomas , Factores de Transcripción/genéticaRESUMEN
Designing highly conducting metal-organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. Herein, a strategic design in which a metal-sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. The MOF {[Cu2(6-Hmna)(6-mn)]·NH4}n (1, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (-Cu-S-)n plane, is synthesized from the reaction of Cu(NO3)2, and 6,6'-dithiodinicotinic acid via the in situ cleavage of an S-S bond under hydrothermal conditions. A single crystal of the MOF is found to have a low activation energy (6 meV), small bandgap (1.34 eV) and a highest electrical conductivity (10.96 S cm-1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.
RESUMEN
Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.