Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(26): 4937-4953.e23, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563664

RESUMEN

To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.


Asunto(s)
Cromatina , Cardiopatías Congénitas , Humanos , Cromatina/genética , Cardiopatías Congénitas/genética , Corazón , Mutación , Análisis de la Célula Individual
2.
Circ Res ; 128(5): 670-686, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818124

RESUMEN

The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/citología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Animales , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal
3.
Arterioscler Thromb Vasc Biol ; 41(6): 1874-1889, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792349
4.
Proc Natl Acad Sci U S A ; 116(26): 13006-13015, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189595

RESUMEN

Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln-/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln-/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln-/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr-/- mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.


Asunto(s)
Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/patología , Apelina/metabolismo , Neprilisina/metabolismo , Anciano , Anciano de 80 o más Años , Angiotensina II/administración & dosificación , Enzima Convertidora de Angiotensina 2 , Animales , Aorta Abdominal/citología , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/etiología , Apelina/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Miocitos del Músculo Liso , Neprilisina/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Peptidil-Dipeptidasa A/metabolismo , Fenilefrina/administración & dosificación , Cultivo Primario de Células , Proteolisis/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética
5.
Circ Res ; 125(5): 552-566, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31288631

RESUMEN

RATIONALE: Activated fibroblasts are the major cell type that secretes excessive extracellular matrix in response to injury, contributing to pathological fibrosis and leading to organ failure. Effective anti-fibrotic therapeutic solutions, however, are not available due to the poorly defined characteristics and unavailability of tissue-specific fibroblasts. Recent advances in single-cell RNA-sequencing fill such gaps of knowledge by enabling delineation of the developmental trajectories and identification of regulatory pathways of tissue-specific fibroblasts among different organs. OBJECTIVE: This study aims to define the transcriptome profiles of tissue-specific fibroblasts using recently reported mouse single-cell RNA-sequencing atlas and to develop a robust chemically defined protocol to derive cardiac fibroblasts (CFs) from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis and drug screening. METHODS AND RESULTS: By analyzing the single-cell transcriptome profiles of fibroblasts from 10 selected mouse tissues, we identified distinct tissue-specific signature genes, including transcription factors that define the identities of fibroblasts in the heart, lungs, trachea, and bladder. We also determined that CFs in large are of the epicardial lineage. We thus developed a robust chemically defined protocol that generates CFs from human induced pluripotent stem cells. Functional studies confirmed that iPSC-derived CFs preserved a quiescent phenotype and highly resembled primary CFs at the transcriptional, cellular, and functional levels. We demonstrated that this cell-based platform is sensitive to both pro- and anti-fibrosis drugs. Finally, we showed that crosstalk between human induced pluripotent stem cell-derived cardiomyocytes and CFs via the atrial/brain natriuretic peptide-natriuretic peptide receptor-1 pathway is implicated in suppressing fibrogenesis. CONCLUSIONS: This study uncovers unique gene signatures that define tissue-specific identities of fibroblasts. The bona fide quiescent CFs derived from human induced pluripotent stem cells can serve as a faithful in vitro platform to better understand the underlying mechanisms of cardiac fibrosis and to screen anti-fibrotic drugs.


Asunto(s)
Fibroblastos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Animales , Antifibrinolíticos/farmacología , Antifibrinolíticos/uso terapéutico , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos
7.
Circ Res ; 123(3): 372-388, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29930147

RESUMEN

RATIONALE: ADAM17 (a disintegrin and metalloproteinase-17) is a membrane-bound enzyme that regulates bioavailability of multiple transmembrane proteins by proteolytic processing. ADAM17 has been linked to several pathologies, but its role in thoracic aortic aneurysm (TAA) has not been determined. OBJECTIVE: The objective of this study was to explore the cell-specific functions of vascular ADAM17 in the pathogenesis and progression of TAA. METHODS AND RESULTS: In aneurysmal thoracic aorta from patients, ADAM17 was increased in tunica media and intima. To determine the function of ADAM17 in the major cells types within these regions, we generated mice lacking ADAM17 in smooth muscle cells (SMC; Adam17f/f/Sm22Cre/+ ) or endothelial cells (Adam17f/f/Tie2Cre/+ ). ADAM17 deficiency in either cell type was sufficient to suppress TAA dilation markedly and adverse remodeling in males and females (in vivo) although through different mechanisms. ADAM17 deficiency in SMCs prevented the contractile-to-synthetic phenotypic switching in these cells after TAA induction, preventing perivascular fibrosis, inflammation, and adverse aortic remodeling. Loss of ADAM17 in endothelial cells protected the integrity of the intimal barrier by preserving the adherens junction (vascular endothelial-cadherin) and tight junctions (junctional adhesion molecule-A and claudin). In vitro studies on primary mouse thoracic SMCs and human primary aortic SMCs and endothelial cells (±ADAM17 small interfering RNA) confirmed the cell-specific functions of ADAM17 and demonstrated the cross-species validity of these findings. To determine the impact of ADAM17 inhibition in treating TAA, we used an ADAM17-selective inhibitor (PF-548) before or 3 days after TAA induction. In both cases, ADAM17 inhibition prevented progression of aneurysmal growth. CONCLUSIONS: We have identified distinct cell-specific functions of ADAM17 in TAA progression, promoting pathological remodeling of SMC and impairing integrity of the intimal endothelial cell barrier. The dual impact of ADAM17 deficiency (or inhibition) in protecting 2 major cell types in the aortic wall highlights the unique position of this proteinase as a critical treatment target for TAA.


Asunto(s)
Proteína ADAM17/metabolismo , Aneurisma de la Aorta Torácica/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína ADAM17/genética , Animales , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta Torácica/patología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Am J Physiol Heart Circ Physiol ; 314(5): H978-H990, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373036

RESUMEN

Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3-/-) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3-/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3-/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1ß and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3-/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3-/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.


Asunto(s)
Cardiomiopatías/metabolismo , Sobrecarga de Hierro/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Miocardio/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/deficiencia , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Proteínas de Transporte de Catión/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Sobrecarga de Hierro/genética , Hígado/patología , Hepatopatías/genética , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Inhibidor Tisular de Metaloproteinasa-3/genética , Función Ventricular Izquierda , Remodelación Ventricular
11.
J Mol Cell Cardiol ; 103: 11-21, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27993561

RESUMEN

Hypertension is associated with hypertrophy and hyperplasia of smooth muscle cells (SMCs). Disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme reported to mediate SMC hypertrophy through activation of epidermal growth factor receptor (EGFR). We investigated the role of ADAM17 in Ang II-induced hypertension and end-organ damage. VSMC was isolated from mice with intact ADAM17 expression (Adam17f/f) or lacking ADAM17 in the SMC (Adam17f/f/CreSm22). Human VSMCs were isolated from the aorta of donors, and ADAM17 deletion was achieved by siRNA transfection. Ang II suppressed proliferation and migration of Adam17-deficient SMCs, but did not affect apoptosis (mouse and human), this was associated with reduced activation of EGFR and Erk1/2 signaling. Adam17f/f/CreSm22 and littermate Adam17f/f mice received saline or Ang II (Alzet pumps, 1.5mg/kg/d; 2 or 4weeks). Daily blood pressure measurement in conscious mice (telemetry) showed suppressed hypertension in Adam17f/f/CreSm22 mice during the first week of Ang II infusion, but by the second week, it become comparable to that in Adam17f/f mice. EGFR activation remained suppressed in Adam17f/f/CreSm22-Ang II arteries. Ex vivo vascular function and compliance assessed in mesenteric arteries were comparable between genotypes. Consistent with the transient protection against Ang II-induced hypertension, Adam17f/f/CreSm22 mice exhibited significantly lower cardiac hypertrophy and fibrosis, and renal fibrosis at 2weeks post-Ang II, however this protection was abolished by the fourth week of Ang II infusion. In conclusion, while Adam17-deficiency suppresses Ang II-induced SMC remodeling in vitro, in vivo Adam17-deficiency provides only a transient protective effect against Ang II-mediated hypertension and end-organ damage.


Asunto(s)
Angiotensina II/metabolismo , Desintegrinas/metabolismo , Hipertensión/etiología , Hipertensión/metabolismo , Metaloproteinasa 17 de la Matriz/metabolismo , Miocitos del Músculo Liso/metabolismo , Angiotensina II/efectos adversos , Animales , Apoptosis , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Humanos , Hipertensión/patología , Masculino , Metaloproteinasa 17 de la Matriz/deficiencia , Metaloproteinasa 17 de la Matriz/genética , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo
12.
J Mol Cell Cardiol ; 93: 186-99, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26522853

RESUMEN

A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.


Asunto(s)
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Proteínas ADAM/química , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Familia de Multigenes , Mutación , Organogénesis/genética , Polimorfismo Genético , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato
13.
Arterioscler Thromb Vasc Biol ; 35(4): 888-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25657308

RESUMEN

OBJECTIVE: Aortic aneurysm, focal dilation of the aorta, results from impaired integrity of aortic extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are traditionally known as ECM-degrading enzymes. MMP2 has been associated with aneurysm in patients and in animal models. We investigated the role of MMP2 in thoracic aortic aneurysm using 2 models of aortic remodeling and aneurysm. APPROACH AND RESULTS: Male 10-week-old MMP2-deficient (MMP2(-/-)) and wild-type mice received angiotensin II (Ang II, 1.5 mg/kg/day) or saline (Alzet pump) for 4 weeks. Although both genotypes exhibited dilation of the ascending aorta after Ang II infusion, MMP2(-/-) mice showed more severe dilation of the thoracic aorta and thoracic aortic aneurysm. The Ang II-induced increase in elastin and collagen (mRNA and protein) was markedly suppressed in MMP2(-/-) thoracic aorta and smooth muscle cells, whereas only mRNA levels were reduced in MMP2(-/-)-Ang II abdominal aorta. Consistent with the absence of MMP2, proteolytic activities were lower in MMP2(-/-)-Ang II compared with wild-type-Ang II thoracic and abdominal aorta. MMP2-deficiency suppressed the activation of latent transforming growth factor-ß and the Smad2/3 pathway in vivo and in vitro. Intriguingly, MMP2(-/-) mice were protected against CaCl2-induced thoracic aortic aneurysm, which triggered ECM degradation but not synthesis. CONCLUSIONS: This study reveals the dual role of MMP2 in ECM degradation, as well as ECM synthesis. Moreover, the greater susceptibility of the thoracic aorta to impaired ECM synthesis, compared with vulnerability of the abdominal aorta to aberrant ECM degradation, provides an insight into the regional susceptibility of the aorta to aneurysm development.


Asunto(s)
Aorta Torácica/enzimología , Aneurisma de la Aorta Torácica/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Remodelación Vascular , Angiotensina II , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/prevención & control , Cloruro de Calcio , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Dilatación Patológica , Modelos Animales de Enfermedad , Elastina/genética , Elastina/metabolismo , Genotipo , Masculino , Metaloproteinasa 2 de la Matriz/deficiencia , Metaloproteinasa 2 de la Matriz/genética , Ratones Endogámicos C57BL , Músculo Liso Vascular/diagnóstico por imagen , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , ARN Mensajero/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ultrasonografía
14.
Stem Cell Res Ther ; 15(1): 226, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075623

RESUMEN

BACKGROUND: B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS: Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS: Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS: BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética
15.
Stem Cell Res Ther ; 14(1): 228, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649113

RESUMEN

In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Técnicas de Cocultivo , Epigenómica , Proliferación Celular
16.
STAR Protoc ; 4(2): 102256, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37119139

RESUMEN

Cardiac pericytes are a critical yet enigmatic cell type within the coronary microvasculature. Since primary human cardiac pericytes are not readily accessible, we present a protocol to generate them from human induced pluripotent stem cells (hiPSCs). Our protocol involves several steps, including the generation of intermediate cell types such as mid-primitive streak, lateral plate mesoderm, splanchnic mesoderm, septum transversum, and epicardium, before deriving cardiac pericytes. With hiPSC-derived cardiac pericytes, researchers can decipher the mechanisms underlying coronary microvascular dysfunction. For complete details on the use and execution of this protocol, please refer to Shen et al.1.

17.
Nat Cardiovasc Res ; 2(5): 467-485, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37693816

RESUMEN

The pleiotropic benefits of statins in cardiovascular diseases that are independent of their lipid-lowering effects have been well documented, but the underlying mechanisms remain elusive. Here we show that simvastatin significantly improves human induced pluripotent stem cell-derived endothelial cell functions in both baseline and diabetic conditions by reducing chromatin accessibility at transcriptional enhanced associate domain elements and ultimately at endothelial-to-mesenchymal transition (EndMT)-regulating genes in a yes-associated protein (YAP)-dependent manner. Inhibition of geranylgeranyltransferase (GGTase) I, a mevalonate pathway intermediate, repressed YAP nuclear translocation and YAP activity via RhoA signaling antagonism. We further identified a previously undescribed SOX9 enhancer downstream of statin-YAP signaling that promotes the EndMT process. Thus, inhibition of any component of the GGTase-RhoA-YAP-SRY box transcription factor 9 (SOX9) signaling axis was shown to rescue EndMT-associated endothelial dysfunction both in vitro and in vivo, especially under diabetic conditions. Overall, our study reveals an epigenetic modulatory role for simvastatin in repressing EndMT to confer protection against endothelial dysfunction.

18.
Methods Mol Biol ; 2429: 233-246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507165

RESUMEN

Vascular smooth muscle cells (VSMCs), a highly mosaic tissue, arise from multiple distinct embryonic origins and populate different regions of our vascular network with defined boundaries. Accumulating evidence has revealed that the heterogeneity of VSMC origins contributes to region-specific vascular diseases such as atherosclerosis and aortic aneurysm. These findings highlight the necessity of taking into account lineage-dependent responses of VSMCs to common vascular risk factors when studying vascular diseases. This chapter describes a reproducible, stepwise protocol for the generation of isogenic VSMC subtypes originated from proepicardium, second heart field, cardiac neural crest, and ventral somite using human induced pluripotent stem cells. By leveraging this robust induction protocol, patient-derived VSMC subtypes of desired embryonic origins can be generated for disease modeling as well as drug screening and development for vasculopathies with regional susceptibility.


Asunto(s)
Aterosclerosis , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología
19.
Methods Mol Biol ; 2454: 109-115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32671814

RESUMEN

Myocardial fibrosis is a hallmark of cardiac remodeling, which can progressively lead to heart failure, a leading cause of death worldwide. The effector cells of fibrosis in the heart are cardiac fibroblasts (CFs). There is currently no effective therapeutic strategy clinically available to specifically attenuate maladaptive responses of CFs. Large-scale applications such as high-throughput drug screening are difficult due to the limited availability of human primary CFs, thus limiting the development of future treatments. Here, we describe a robust induction protocol that can be used to generate a scalable, consistent, genetically defined source of quiescent CFs from human induced pluripotent stem cells for cardiac fibrosis modeling, drug discovery, and tissue engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Fibroblastos , Fibrosis , Corazón , Humanos , Miocardio/patología , Miocitos Cardíacos
20.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993757

RESUMEN

Drug-induced cardiotoxicity is the leading cause of drug attrition and withdrawal from the market. Therefore, using appropriate preclinical cardiac safety assessment models is a critical step during drug development. Currently, cardiac safety assessment is still highly dependent on animal studies. However, animal models are plagued by poor translational specificity to humans due to species-specific differences, particularly in terms of cardiac electrophysiological characteristics. Thus, there is an urgent need to develop a reliable, efficient, and human-based model for preclinical cardiac safety assessment. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as an invaluable in vitro model for drug-induced cardiotoxicity screening and disease modeling. hiPSC-CMs can be obtained from individuals with diverse genetic backgrounds and various diseased conditions, making them an ideal surrogate to assess drug-induced cardiotoxicity individually. Therefore, methodologies to comprehensively investigate the functional characteristics of hiPSC-CMs need to be established. In this protocol, we detail various functional assays that can be assessed on hiPSC-CMs, including the measurement of contractility, field potential, action potential, and calcium handling. Overall, the incorporation of hiPSC-CMs into preclinical cardiac safety assessment has the potential to revolutionize drug development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción/fisiología , Animales , Cardiotoxicidad , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microelectrodos , Miocitos Cardíacos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA