Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Math Biosci Eng ; 21(3): 4463-4484, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38549336

RESUMEN

OBJECTIVE: This study evaluates the impact of different combinations of treatment regimens, such as additional radiation, chemotherapy, and surgical treatments, on the survival of elderly rectal cancer patients ≥ 70 years of age to support physicians' clinical decision-making. METHODS: Data from a sample of elderly rectal cancer patients aged ≥ 70 years diagnosed from 2005-2015 from the US surveillance, epidemiology, and end results (SEER) database were retrospectively analyzed. The best cut-off point was selected using the x-tile software for the three continuity indices: age, tumor size, and number of regional lymph nodes. All patients were categorized into either the neoadjuvant radiotherapy and surgery group (R_S group), the surgical treatment group (S group), or the surgery and adjuvant radiotherapy group (S_R group). The propensity score allocation was used to match each included study subject in a 1:1 ratio, and the restricted mean survival time method (RMST) was used to predict the mean survival of rectal cancer patients within 5 and 10 years. The prognostic risk factors for rectal cancer patients were determined using univariate and multivariate Cox regression analyses, and nomograms were constructed. A subgroup stratification analysis of patients with different treatment combination regimens was performed using the Kaplan-Meier method, and log-rank tests were used for between-group comparisons. The model's predictive accuracy was assessed by receiver operating characteristic (ROC) curves, correction curves, and a clinical decision curve analysis (DCA). RESULTS: A total of 7556 cases of sample data from 2005 to 2015 were included, which were categorized into 6639 patients (87.86%) in the S group, 408 patients (5.4%) in the R_S group, and 509 patients (6.74%) in the S_R group, according to the relevant order of radiotherapy and surgery. After propensity score matching (PSM), the primary clinical characteristics of the groups were balanced and comparable. The difference in the mean survival time before and after PSM was not statistically significant in both R_S and S groups (P value > 0.05), and the difference in the mean survival time after PSM was statistically substantial in S_R and S groups (P value < 0.05). In the multifactorial Cox analysis, the M1 stage and Nodes ≥ 9 were independent risk factors. An age between 70-75 was an independent protective factor for patients with rectal cancer in the R_S and S groups. The Marital_status, T4 stage, N2 stage, M1 stage, and Nodes ≥ 9 were independent risk factors for patients with rectal cancer in the S_R and S groups, and an age between 70-81 was an independent protective factor. The ROC curve area, the model C index, and the survival calibration curve suggested good agreement between the actual and predicted values of the model. The DCA for 3-year, 5-year, and 10-year survival periods indicated that the model had some potential for application. CONCLUSIONS: The results of the study showed no significant difference in the overall survival (OS) between elderly patients who received neoadjuvant radiotherapy and surgery and those who received surgery alone; elderly patients who received surgery and adjuvant radiotherapy had some survival benefits compared with those who received surgery alone, though the benefit of adjuvant radiotherapy was not significant. Therefore, radiotherapy for rectal cancer patients older than 70 years old should be based on individual differences in condition, and a precise treatment plan should be developed.


Asunto(s)
Ganglios Linfáticos , Neoplasias , Anciano , Humanos , Anciano de 80 o más Años , Estudios Retrospectivos , Bases de Datos Factuales , Calibración , Análisis Multivariante
2.
Math Biosci Eng ; 20(6): 10954-10976, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37322967

RESUMEN

For the problems of blurred edges, uneven background distribution, and many noise interferences in medical image segmentation, we proposed a medical image segmentation algorithm based on deep neural network technology, which adopts a similar U-Net backbone structure and includes two parts: encoding and decoding. Firstly, the images are passed through the encoder path with residual and convolutional structures for image feature information extraction. We added the attention mechanism module to the network jump connection to address the problems of redundant network channel dimensions and low spatial perception of complex lesions. Finally, the medical image segmentation results are obtained using the decoder path with residual and convolutional structures. To verify the validity of the model in this paper, we conducted the corresponding comparative experimental analysis, and the experimental results show that the DICE and IOU of the proposed model are 0.7826, 0.9683, 0.8904, 0.8069, and 0.9462, 0.9537 for DRIVE, ISIC2018 and COVID-19 CT datasets, respectively. The segmentation accuracy is effectively improved for medical images with complex shapes and adhesions between lesions and normal tissues.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico por imagen , Algoritmos , Tecnología , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
3.
Front Oncol ; 12: 1087438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713495

RESUMEN

The similar shape and texture of colonic polyps and normal mucosal tissues lead to low accuracy of medical image segmentation algorithms. To solve these problems, we proposed a polyp image segmentation algorithm based on deep learning technology, which combines a HarDNet module, attention module, and multi-scale coding module with the U-Net network as the basic framework, including two stages of coding and decoding. In the encoder stage, HarDNet68 is used as the main backbone network to extract features using four null space convolutional pooling pyramids while improving the inference speed and computational efficiency; the attention mechanism module is added to the encoding and decoding network; then the model can learn the global and local feature information of the polyp image, thus having the ability to process information in both spatial and channel dimensions, to solve the problem of information loss in the encoding stage of the network and improving the performance of the segmentation network. Through comparative analysis with other algorithms, we can find that the network of this paper has a certain degree of improvement in segmentation accuracy and operation speed, which can effectively assist physicians in removing abnormal colorectal tissues and thus reduce the probability of polyp cancer, and improve the survival rate and quality of life of patients. Also, it has good generalization ability, which can provide technical support and prevention for colon cancer.

4.
Front Neural Circuits ; 13: 25, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057370

RESUMEN

Both abnormalities of resting-state cerebral blood flow (CBF) and functional connectivity in Wilson's disease (WD) have been identified by several studies. Whether the coupling of CBF and functional connectivity is imbalanced in WD remains largely unknown. To assess this possibility, 27 patients with WD and 27 sex- and age-matched healthy controls were recruited to acquire functional MRI and arterial spin labeling imaging data. Functional connectivity strength (FCS) and CBF were calculated based on standard gray mask. Compared to healthy controls, the CBF-FCS correlations of patients with WD were significantly decreased in the basal ganglia and the cerebellum and slightly increased in the prefrontal cortex and thalamus. In contrast, decreased CBF of patients with WD occurred predominately in subcortical and cognitive- and emotion-related brain regions, including the basal ganglia, thalamus, insular, and inferior prefrontal cortex, whereas increased CBF occurred primarily in the temporal cortex. The FCS decrease in WD patients was predominately in the basal ganglia and thalamus, and the increase was primarily in the prefrontal cortex. These findings suggest that aberrant neurovascular coupling in the brain may be a possible neuropathological mechanism underlying WD.


Asunto(s)
Encéfalo/fisiopatología , Degeneración Hepatolenticular/fisiopatología , Acoplamiento Neurovascular/fisiología , Adolescente , Adulto , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Descanso , Adulto Joven
5.
Front Aging Neurosci ; 11: 295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787890

RESUMEN

Several studies have demonstrated through resting-state functional magnetic resonance imaging (fMRI) that functional connectivity changes are important in the recovery from Bell's palsy (BP); however, these studies have only focused on the cortico-cortical connectivity. It is unclear how corticostriatal connectivity relates to the recovery process of patients with BP. In the present study, we evaluated the relationship between longitudinal changes of caudate-based functional connectivity and longitudinal changes of facial performance in patients with intractable BP. Twenty-one patients with intractable BP underwent resting-state fMRI as well as facial behavioral assessments prior to treatment (PT) and at the middle stage of treatment (MT); and 21 age- and sex-matched healthy controls (HC) were recruited and received the same protocol. The caudate was divided into dorsal and ventral sub-regions and separate functional connectivity was calculated. Compared with HC, patients with intractable BP at the PT stage showed decreased functional connectivity of both the dorsal and ventral caudate mainly distributed in the somatosensory network, including the bilateral precentral gyrus (MI), left postcentral gyrus, media frontal gyrus, and superior temporal gyrus (STG). Alternatively, patients in the MT stage showed decreased functional connectivity primarily distributed in the executive network and somatosensory network, including the bilateral cingulate cortex (CC), left anterior cingulate cortex (LACC), inferior prefrontal gyrus (IFG), MI, STG, and paracentral lobe. The longitudinal changes in functional connectivity of both the dorsal and ventral caudate were mainly observed in the executive network, including the right ACC, left CC, and IFG. Functional connectivity changes in the right ACC and left IFG were significantly correlated with changes in facial behavioral performance. These findings indicated that corticostriatal connectivity changes are associated with recovery from BP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA