Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2404184, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128134

RESUMEN

Optically-controlled phase change materials, which are prepared by introducing molecular photoswitches into traditional phase change materials (PCMs), can convert and store solar energy into photochemical enthalpy and phase change enthalpy. However, the thermophysical properties of optically controlled PCMs, which are crucial in the practical, are rarely paid attention to. 4-(phenyldiazenyl)phenyl decanoate (Azo-A-10) is experimentally prepared as an optically-controlled PCMs, whose energy storage density is 210.0 kJ·kg-1, and the trans single crystal structure is obtained. The density, phase transition temperature, thermal conductivity, and other parameters in trans state are measured experimentally. Furthermore, a microscopic model of Azo-A-10 is established, and the thermophysical properties are analyzed based on molecular dynamics. The results show that the microstructure parameter (order parameters) and thermophysical properties (density, radial distribution function, self-diffusion coefficient, phase change temperature, and thermal conductivity) of partially or completely isomerized Azo-A-10, which are challenging to observe in experiments, can be predicted by molecular dynamics simulation. The optically-controlled phase change mechanism can be clarified according to the differences in microstructure. The optically-controlled switchability of thermophysical properties of an optically-controlled PCM is analyzed. This study provides ideas for the improvement, development, and application of optically-controlled PCMs in the future.

2.
ACS Appl Mater Interfaces ; 15(48): 56253-56264, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988477

RESUMEN

MOF-based type III porous liquids, comprising porous MOFs dissolved in a liquid solvent, have attracted increasing attention in carbon capture. However, discovering appropriate MOFs to prepare porous liquids was still limited in experiments, wasting time and energy. In this study, we have used the density functional theory and molecular dynamics simulation methods to identify 4530 MOF candidates as the core database based on the idea of prohibiting the pore occupancy of porous liquids by the solvent, [DBU-PEG][NTf2] ionic liquid. Based on high-throughput molecular simulation, random forest machine learning models were first trained to predict the CO2 sorption and the CO2/N2 sorption selectivity of MOFs to screen the MOFs to prepare porous liquids. The feature importance was inferred based on Shapley Additive Explanations (SHAP) interpretation, and the ranking of the top 5 descriptors for sorption/selectivity trade-off (TSN) was gravimetric surface area (GSA) > porosity > density > metal fraction > pore size distribution (PSD, 3.5-4 Å). RICBEM was predicted to be one candidate for preparing porous liquid with CO2 sorption capacity of 20.87 mmol/g and CO2/N2 sorption selectivity of 16.75. The experimental results showed that the RICBEM-based porous liquid was successfully synthesized with CO2 sorption capacity of 2.21 mmol/g and CO2/N2 sorption selectivity of 63.2, the best carbon capture performance known to date. Such a screening method would advance the screening of cores and solvents for preparing type III porous liquids with different applications by addressing corresponding factors.

3.
ACS Omega ; 7(7): 5687-5697, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224330

RESUMEN

Porous liquids (PLs) have both liquid fluidity and solid porosity, thereby offering a variety of applications, such as gas sorption and separation, homogeneous catalysis, energy storage, and so forth. In this research, canopies with varying structures were utilized to modify porous silica nanoparticles to develop Type I PLs. According to experimental results, the molecular weight of canopies should be high enough to maintain the porous materials in the liquid state at room temperature. Characterization results revealed that PL_1_M2070 and PL_1_AC1815 displayed low viscosity and good fluidity. Both low temperature and high pressure positively influenced CO2 capacity. The cavity occupancy resulted in poorer sorption capacity of PLs with branched canopies in comparison with that with linear canopies. Furthermore, the sorption capacity of PL_1_M2070 was 90.5% of the original CO2 sorption capacity after 10 sorption/desorption cycles, indicating excellent recyclability.

4.
J Phys Chem B ; 125(20): 5387-5396, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33983737

RESUMEN

Porous liquids (PLs) as a new class of materials have broad application prospects in many areas such as gas separation and storage, air separation, and homogeneous catalysis. Here, molecular dynamics simulations were used to advance the understanding of PLs with different canopy structures. PLs composed of hollow SiO2 molecules, which were functionalized with polymer chains containing coronas and canopies to make them liquid at accessible temperatures, were quite different from pure SiO2 nanoparticles. It was found that linear and long canopy structures were better for dispersion of PLs, which was mainly due to the steric hindrance effect instead of electrostatic (charge) repulsion. In addition, simulation results demonstrated that PLs with long and linear polymer chains tended to have smaller relative entanglement depth, which means lower viscosity and better fluidity. Moreover, to keep intrinsic pores empty, PLs should possess long and linear canopies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA