Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37160364

RESUMEN

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Asunto(s)
Hipertensión Esencial , Hipertensión , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Ratas , Hormona Adrenocorticotrópica , Hormona Liberadora de Corticotropina/metabolismo , Hipertensión Esencial/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/farmacología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático/fisiología
2.
BMC Plant Biol ; 23(1): 592, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008724

RESUMEN

BACKGROUND: Rhamnus utilis Decne (Rhamnaceae) is an ecologically and economically important tree species. The growing market demands and recent anthropogenic impacts to R. utilis forests has negatively impacted its populations severely. However, little is known about the potential distribution of this species and environmental factors that affect habitat suitability for this species. By using 219 occurrence records along with 51 environmental factors, present and future suitable habitats were estimated for R. utilis using Maxent modeling; the important environmental factors affecting its distribution were analyzed. RESULTS: January water vapor pressure, normalized difference vegetation index, mean diurnal range, and precipitation of the warmest quarter represented the critical factors explaining the environmental requirements of R. utilis. The potential habitat of R. utilis included most provinces from central to southeast China. Under the climate change scenario SSP 245, Maxent predicted a cumulative loss of ca. 0.73 × 105 km2 in suitable habitat for R. utilis during 2041-2060 while an increase of ca. 0.65 × 105 km2 occurred during 2081-2100. Furthermore, under this climate change scenario, the suitable habitat will geographically expand to higher elevations. CONCLUSIONS: The findings of our study provide a foundation for targeted conservation efforts and inform future research on R. utilis. By considering the identified environmental factors and anticipating the potential impacts of climate change, conservation strategies can be developed to preserve and restore suitable habitats for R. utilis. Protecting this species is not only crucial for maintaining biodiversity but also for sustaining the economic benefits associated with its ecological services.


Asunto(s)
Cambio Climático , Rhamnus , Ecosistema , China , Bosques
3.
J Neurochem ; 161(6): 478-491, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35583089

RESUMEN

Glutamate N-methyl-d-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.


Asunto(s)
Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Animales , Hormona Liberadora de Corticotropina/metabolismo , N-Metilaspartato/farmacología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología
4.
Neuroradiology ; 62(1): 63-69, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31773188

RESUMEN

PURPOSE: Although numerous clinical neuroimaging studies have demonstrated that there are functional abnormalities of motor-related regions in patients with Parkinson's disease (PD) by resting-state functional magnetic resonance imaging (fMRI), little studies have explored the causal interactions within these motor-related regions. The present study aimed to examine Granger causality connectivity patterns within motor-related regions in PD patients. METHODS: Resting-state fMRI was conducted to investigate the causal connectivity differences within motor-related regions between 17 PD patients and 17 matched healthy controls. Subsequently, the relationship between the Unified Parkinson's Disease Rating Scale scores and causal connectivity values within motor-related regions was examined in PD patients. RESULTS: An increased causal connectivity from the left premotor cortex (PMC) to right primary motor cortex (M1) was found in PD patients compared with that of healthy controls. Also, increased causal flow from the PMC to M1 was negatively correlated with motor scores. CONCLUSION: PD patients have abnormal causal connectivity in specific motor-related regions, which may reflect a compensatory role of motor deficits in PD patients.


Asunto(s)
Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Mapeo Encefálico , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Descanso/fisiología
5.
Exp Parasitol ; 211: 107828, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31917163

RESUMEN

Polymorphonuclear neutrophils (PMNs) are the most abundant leukocytes and are among the first line of immune system defense. PMNs can form neutrophil extracellular traps (NETs) in response to some pathogens. The release of NETs plays an important role in trapping and killing invading parasites. However, the effects of NETs on parasitic trematode infections remain unclear. In the present study, water buffalo NET formation, triggered by the newly excysted juveniles (NEJs) of Fasciola gigantica, was visualized by scanning electron microscopy. The major components of the structure of NETs were characterized by immunofluorescence. Viability of flukes incubated with water buffalo PMNs were examined under light microscopy. The results revealed that F. gigantic juveniles triggered PMN-mediated NETs. These NETs were confirmed to comprise the classic characteristics of NETs: DNA, histones, myeloperoxidase and neutrophil elastase. Although NETs were formed in response to viable larvae, the larvae were not killed in vitro. These results suggest that NET formation may serve as a mechanism to hamper the migration of large larvae to facilitate immune cells to kill them. This study demonstrates, for the first time, that parasitic trematode juveniles can trigger NET formation.

6.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204490

RESUMEN

This paper develops an improved model predictive controller based on the online obtaining of softness factor and fusion velocity for automatic train operation to enhance the tracking control performance. Specifically, the softness factor of the improved model predictive control algorithm is not a constant, conversely, an improved online adaptive adjusting method for softness factor based on fuzzy satisfaction of system output value and velocity distance trajectory characteristic is adopted, and an improved whale optimization algorithm has been proposed to solve the adjustable parameters; meanwhile, the system output value for automatic train operation is not sampled by a normal speed sensor, on the contrary, an improved online velocity sampled method for the system output value based on a fusion velocity model and an intelligent digital torque sensor is applied. In addition, the two improved strategies proposed take the real-time storage and calculation capacities of the core chip of the controller into account. Therefore, the proposed improved strategies (I) have good performance in tracking precision, (II) are simple and easily conducted, and (III) can ensure the accomplishing of computational tasks in real-time. Finally, to verify the effectiveness of the improved model predictive controller, the Matlab/simulink simulation and hardware-in-the-loop simulation (HILS) are adopted for automatic train operation tracking control, and the tracking control simulation results indicate that the improved model predictive controller has better tracking control effectiveness compared with the existing traditional improved model predictive controller.

7.
BMC Genomics ; 20(1): 729, 2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31606027

RESUMEN

BACKGROUND: The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS: Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS: Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.


Asunto(s)
Fasciola/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Mamíferos/parasitología , Caracoles/parasitología , Animales , Evolución Molecular , Fasciola/genética , Regulación de la Expresión Génica , Especificidad del Huésped , Humanos , Estadios del Ciclo de Vida , Familia de Multigenes , Proteínas Protozoarias/genética
8.
Chaos ; 29(3): 033120, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927850

RESUMEN

Numerous well-known processes of complex systems such as spreading and cascading are mainly affected by a small number of critical nodes. Identifying influential nodes that lead to broad spreading in complex networks is of great theoretical and practical importance. Since the identification of vital nodes is closely related to propagation dynamics, a novel method DynamicRank that employs the probability model to measure the ranking scores of nodes is suggested. The influence of a node can be denoted by the sum of probability scores of its i order neighboring nodes. This simple yet effective method provides a new idea to understand the identification of vital nodes in propagation dynamics. Experimental studies on both Susceptible-Infected-Recovered and Susceptible-Infected-Susceptible models in real networks demonstrate that it outperforms existing methods such as Coreness, H-index, LocalRank, Betweenness, and Spreading Probability in terms of the Kendall τ coefficient. The linear time complexity enables it to be applied to real large-scale networks with tens of thousands of nodes and edges in a short time.

9.
Ann Bot ; 121(7): 1361-1368, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29562313

RESUMEN

Background: Abscisic acid (ABA) is a well-studied phytohormone demonstrated to be involved in sub-sets of stress responses in plants, such as iron (Fe) deficiency and phosphorus (P) deficiency in Arabidopsis. However, whether ABA is involved in P deficiency in rice has not been frequently studied. The present study was undertaken to investigate the mechanism underlying ABA-aggravated P deficiency in rice (Oryza sativa). Results: P deficiency decreased ABA accumulation rapidly (within 1 h) in the roots. Exogenous ABA negatively regulated root and shoot soluble P contents by decreasing pectin content, inhibiting P deficiency-induced increases in pectin methylesterase activity and expression of the phosphate transporter gene-OsPT6, thereby decreasing the re-utilization of P from the cell wall and its translocation to the shoot. Moreover, neither the nitric oxide (NO) donor sodium nitroprusside nor ethylene precursor 1-aminocyclopropane-1-carboxylic acid had any effect on ABA accumulation, and application of ABA or the ABA inhibitor fluridone also had no effect on NO production and ethylene emission. Conclusions: Under P deficiency, NO levels increase as quickly as ABA levels decrease, to inhibit both the ABA-induced reduction of pectin contents for the re-utilization of cell wall P and the ABA-induced down-regulation of OsPT6 for the translocation of P from roots to shoots. Overall, our results provide novel information indicating that the reduction of ABA under P deficiency is a very important pathway in the re-utilization of cell wall P in rice under P-deficient conditions, which should be a very effective mechanism for plant survival under P deficiency stress for common agronomic practice.


Asunto(s)
Ácido Abscísico/metabolismo , Pared Celular/metabolismo , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Pectinas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Fish Shellfish Immunol ; 83: 190-204, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195911

RESUMEN

Nucleotide excision repair (NER) removes many different types of DNA lesions, and NER related host factors are reported to aid recovery steps during viral integration. Here, we report the identification and characterization of a DNA repair gene Rad23 from Litopenaeus vannamei and explore its role in innate immunity of crustaceans. LvRad23 contains a1149 bp open reading frame (ORF) which encodes a 382 amino acids protein with predicted theoretical isoelectric point of 4.21. LvRad23 was ubiquitously expressed in the muscle, eyestalk, gill, stomach, heart, legs, intestine, and hepatopancreas in order from high to low and LvRad23 protein was showed to be located in the cytoplasm of Drosophila S2 cells. The homology analysis showed that it has a high sequence homology with Rad23 protein from Marsupenaeus japonicus. Vibrio alginolyticus challenge induced a remarkable up-regulation of LvRad23 mRNA in hepatopancreas. Knocking down LvRad23can interfere the NER pathway by down regulating the expression of replication protein A (RPA) and proliferating cell nuclear antigen (PCNA). However it didn't cause any significant difference on total hemocyte count (THC) between LvRad23-silenced and non-silenced group.LvRad23-silenced then challenge with V. alginolyticus inducing high level of reactive oxygen species (ROS) and DNA damage in hemolymph. As well as decreased THC, which seriously diminished the innate immune system of L. vannamei. Meanwhile, the NER pathway was reactived by enhancing the expression of LvRad23 and promoting the production of LvPCNA to resist apoptosis and maintain proliferation of hemolymph cells in the later stage. Our results suggest that LvRad23 plays a vital role in shrimp specific immune response to V. alginolytcus through its participation in NER pathway.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Penaeidae/genética , Penaeidae/microbiología , Vibrio alginolyticus , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN Complementario/genética , Proteínas de Unión al ADN/metabolismo
11.
J Neurochem ; 136(3): 609-19, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26558357

RESUMEN

The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Sueño/fisiología , Vigilia/fisiología , Animales , Bencilaminas/farmacología , Cloruro de Calcio/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Electroencefalografía , Electromiografía , Masculino , Microinyecciones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Privación de Sueño , Estadísticas no Paramétricas , Sulfonamidas/farmacología , Vigilia/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-26591007

RESUMEN

BACKGROUND: Posttraumatic nightmares are a highly prevalent and distressing symptom of posttraumatic stress disorder (PTSD), but have been the subject of limited phenomenological investigations. METHODS: We utilized a communication box to establish PTSD symptoms in rats through exposure to footshock stress (FS) and psychological stress (PS). The immunohistochemical test and high-performance liquid chromatography with electrochemical detection were used to detect the activity and monoamine levels in the rats' arousal systems. RESULTS: Twenty-one days after traumatic stress, 14.17% of FS and 12.5% of PS rats exhibited startled awakening, and the same rats showed hyperfunction of the locus coeruleus/noradrenergic system and hypofunction of the perifornical nucleus/orexinergic system. Changes in serotonin levels in the dorsal raphe nucleus showed opposite trends in the FS and PS rats that were startled awake. No differences were found in other sleep/arousal systems. CONCLUSION: These results suggest that different clinically therapeutic strategies should be considered to treat different trauma-induced posttraumatic nightmares.


Asunto(s)
Encéfalo/metabolismo , Terrores Nocturnos/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Electrochoque , Femenino , Pie , Inmunohistoquímica , Neuronas/metabolismo , Norepinefrina/metabolismo , Orexinas/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Reflejo de Sobresalto/fisiología , Serotonina/metabolismo , Sueño/fisiología , Trastornos por Estrés Postraumático/etiología , Vigilia/fisiología
13.
Bioorg Med Chem Lett ; 26(21): 5334-5339, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27680589

RESUMEN

2-Substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole, a key structural moiety exiting in many bioactive molecules, has been shown to have excellent selective activity on COX-2. In the present study, the anti-inflammatory activity and the underlying molecular mechanism of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on skin inflammation were assessed by 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice. Most of the compounds showed anti-inflammatory activity on TPA-induced skin inflammation. The anti-inflammatory activity of compound 4 showed higher anti-inflammatory activity than celecoxib (3.2-fold). Compound 4 pretreatment resulted in markedly suppression of TPA-induced IL-1ß, IL-6, TNF-α, and COX-2, respectively. Furthermore, the mechanical study indicated that the anti-inflammatory activity of compound 4 was associated with its ability to inhibit activation of factor kappa-κB (NF-κB) by blocking IκB kinase (IKK) activities. Accordingly, compound 4 could be used as a potential anti-inflammatory agent for skin inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Dermatitis/prevención & control , Acetato de Tetradecanoilforbol/toxicidad , Animales , Ciclopentanos , Dermatitis/etiología , Ratones , FN-kappa B/metabolismo , Pirroles
14.
Acta Pharmacol Sin ; 36(8): 949-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26238289

RESUMEN

AIM: 7-O-ethylfangchinoline (YH-200) is a bisbenzylisoquinoline derivative. The aim of this study was to investigate the antidepressant-like action and underlying mechanisms of YH-200 in mice. METHODS: Mice were treated with YH-200 (15, 30, and 60 mg/kg, ig) or tetrandrine (30 and 60 mg/kg, ig) before conducting forced swimming test (FST), tail suspension test (TST), or open field test (OFT). RESULTS: YH-200 (60 mg/kg) significantly decreased the immobility time in both FST and TST, and prolonged the latency to immobility in FST. YH-200 (60 mg/kg) was more potent than the natural bisbenzylisoquinoline alkaloid tetrandrine (60 mg/kg) in FST. Pretreatment with α1-adrenoceptor antagonist prazosin (1 mg/kg), ß-adrenoceptor antagonist propranolol (2 mg/kg), dopamine D1/D5 receptor antagonist SCH23390 (0.05 mg/kg), dopamine D2/D3 receptor antagonist haloperidol (0.2 mg/kg) or AMPA receptor antagonist NBQX (10 mg/kg) prevented the antidepressant-like action of YH-200 (60 mg/kg) in FST. In contrast, pretreatment with α2 adrenoceptor antagonist yohimbine (1 mg/kg) augmented the antidepressant-like action of YH-200 (30 mg/kg) in FST. Chronic administration of YH-200 (30 and 60 mg/kg for 14 d) did not produce drug tolerance; instead its antidepressant-like action was strengthened. Chronic administration of YH-200 did not affect the body weight of mice compared to control mice. CONCLUSION: YH-200 exerts its antidepressant-like action in mice via acting at multi-targets, including α1, α2 and ß-adrenoceptors, D1/D5 and D2 /D3 receptors, as well as AMPA receptors.


Asunto(s)
Antidepresivos/farmacología , Bencilisoquinolinas/farmacología , Receptores AMPA/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Dopaminérgicos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos ICR
15.
Acta Pharmacol Sin ; 35(7): 879-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24989251

RESUMEN

AIM: Disrupted sleep may be a prodromal symptom or a predictor of depressive disorders. In this study we investigated the relationship between depression symptoms and disrupted sleep using a novel model of stress-mimicked sleep disorders in rats. METHODS: SD rats were injected with corticosterone (10, 20 or 40 mg/kg, sc) or vehicle for 7 d. Their sleep-wake behavior was monitored through implanted EEG and EMG electrodes. Their depressive behaviors were assessed using forced swim test, open field test and sucrose preference test. RESULTS: The corticosterone-treated rats showed significantly reduced sleep time, disinhibition of rapid-eye-movement (REM) sleep and altered power spectra during non-REM sleep. All depressive behavioral tests did not show significant difference across the groups. However, individual correlation analysis revealed statistically significance: the immobility time (despair) was negatively correlated with REM sleep latency, slow wave sleep (SWS) time ratio, SWS bouts and delta power density, and it was positively correlated with REM sleep bouts and beta power density. Meanwhile, sucrose preference (anhedonia) was positively correlated with total sleep time and light sleep bouts, and it was negatively correlated with the REM sleep time ratio. CONCLUSION: In stress-mimicked rats, sleep disturbances are a predictor of depressive disorders, and certain symptoms of depression may be related to the disruption of several specific sleep parameters.


Asunto(s)
Corticosterona/metabolismo , Depresión/etiología , Trastornos del Sueño-Vigilia/etiología , Estrés Fisiológico , Animales , Depresión/metabolismo , Depresión/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Sueño , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/fisiopatología
16.
Environ Technol ; 35(9-12): 1190-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701915

RESUMEN

This paper presents the results of a laboratory investigation of the influence zone (IZ) of air sparging (AS) in different media at different surface tension. Different kinds of media were used in two-dimensional tank experiments, designed to determine (1) the effect of surface tension reduction on the airflow pattern during AS in different air travelling modes (channels and bubbles) in homogeneous aquifer and (2) the airflow distribution and migration characteristics in heterogeneous aquifer at different surface tension during AS. The results demonstrated that in homogeneous gravel aquifer, the IZ was almost identical with or without surfactant addition into groundwater, the air saturation, however, was increased with decreasing surface tension. In homogeneous coarse sand tank saturated with 500 mg/L sodium dodecyl benzene sulphonate (SDBS) solution, the IZ was approximately 1.3 times larger than that in the same medium saturated with distilled water. In addition, the density of airflow channels was much larger in medium saturated with SDBS solution. In heterogeneous subsurface saturated with distilled water, when the permeability ratio between two adjoining layers was 8:1, air would bypass low-permeable soils. In contrast, the air would infiltrate into low-permeable soils when SDBS concentration in groundwater was 1000 mg/L. The results indicate that surfactant-enhanced air sparging can effectively improve the volatile organic compounds removal both in homogeneous and heterogeneous media.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Agua Subterránea , Tensión Superficial , Contaminación del Agua , Sedimentos Geológicos , Tensoactivos
17.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429999

RESUMEN

Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.


Asunto(s)
Colesterol , Proteínas de Unión a Ácidos Grasos , Lisosomas , Humanos , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lisosomas/metabolismo , Esteroles/metabolismo
18.
Front Oncol ; 14: 1397246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800393

RESUMEN

Background: Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods: Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results: A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion: ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.

19.
Cardiovasc Res ; 119(8): 1751-1762, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37041718

RESUMEN

AIMS: Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS: Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS: CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.


Asunto(s)
Núcleo Amigdalino Central , Hipertensión , Ratas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Amigdalino Central/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo , Neuronas/metabolismo
20.
Parasit Vectors ; 16(1): 62, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765398

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) released by helminths play an important role in parasite-host communication. However, little is known about the characteristics and contents of the EVs of Fasciola gigantica, a parasitic flatworm that causes tropical fascioliasis. A better understanding of EVs released by F. gigantica will help elucidate the mechanism of F. gigantica-host interaction and facilitate the search for new vaccine candidates for the control and treatment of fascioliasis. METHODS: Two different populations of EVs (15k EVs and 100k EVs) were purified from adult F. gigantica culture media by ultracentrifugation. The morphology and size of the purified EVs were determined by transmission electron microscopy (TEM) and by the Zetasizer Nano ZSP high performance particle characterization system. With the aim of identifying diagnostic markers or potential vaccine candidates, proteins within the isolated 100k EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). Mice were then vaccinated with excretory/secretory products (ESPs; depleted of EVs), 15k EVs, 100k EVs and recombinant F. gigantica heat shock protein 70 (rFg-HSP70) combined with alum adjuvant followed by challenge infection with F. gigantica metacercariae. Fluke recovery and antibody levels were used as measures of vaccine protection. RESULTS: TEM analysis and nanoparticle tracking analysis indicated the successful isolation of two subpopulations of EVs (15k EVs and 100k EVs) from adult F. gigantica culture supernatants using differential centrifugation. A total of 755 proteins were identified in the 100k EVs. Exosome biogenesis or vesicle trafficking proteins, ESCRT (endosomal sorting complex required for transport) pathway proteins and exosome markers, heat shock proteins and 14-3-3 proteins were identified in the 100k EVs. These results indicate that the isolated 100k EVs were exosome-like vesicles. The functions of the identified proteins may be associated with immune regulation, immune evasion and virulence. Mice immunized with F. gigantica ESPs, 15k EVs, 100k EVs and rFg-HSP70 exhibited a reduction in fluke burden of 67.90%, 60.38%, 37.73% and 56.6%, respectively, compared with the adjuvant control group. The vaccination of mice with F. gigantica 100k EVs, 15k EVs, ESP and rFg-HSP70 induced significant production of specific immunoglobulins in sera, namely IgG, IgG1 and IgG2a. CONCLUSION: The results of this study suggest that proteins within the exosome-like vesicles of F. gigantica have immunomodulatory, immune evasion and virulence functions. This knowledge may lead to new strategies for immunotherapy, vaccination and the diagnosis of fascioliasis.


Asunto(s)
Exosomas , Fasciola , Fascioliasis , Vacunas , Ratones , Animales , Fascioliasis/parasitología , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA