Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 189(6): 700-708, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28514632

RESUMEN

Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover.


Asunto(s)
Erizos de Mar , Animales , Arrecifes de Coral , Ecosistema , Peces , Microalgas , Dinámica Poblacional , Conducta Predatoria
2.
Oecologia ; 173(3): 1113-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23673470

RESUMEN

The impacts of climatic change on organisms depend on the interaction of multiple stressors and how these may affect the interactions among species. Consumer-prey relationships may be altered by changes to the abundance of either species, or by changes to the per capita interaction strength among species. To examine the effects of multiple stressors on a species interaction, we test the direct, interactive effects of ocean warming and lowered pH on an abundant marine herbivore (the amphipod Peramphithoe parmerong), and whether this herbivore is affected indirectly by these stressors altering the palatability of its algal food (Sargassum linearifolium). Both increased temperature and lowered pH independently reduced amphipod survival and growth, with the impacts of temperature outweighing those associated with reduced pH. Amphipods were further affected indirectly by changes to the palatability of their food source. The temperature and pH conditions in which algae were grown interacted to affect algal palatability, with acidified conditions only affecting feeding rates when algae were also grown at elevated temperatures. Feeding rates were largely unaffected by the conditions faced by the herbivore while feeding. These results indicate that, in addition to the direct effects on herbivore abundance, climatic stressors will affect the strength of plant-herbivore interactions by changes to the susceptibility of plant tissues to herbivory.


Asunto(s)
Anfípodos/crecimiento & desarrollo , Cadena Alimentaria , Herbivoria/fisiología , Agua de Mar/química , Estrés Fisiológico/fisiología , Análisis de Varianza , Animales , Australia , Concentración de Iones de Hidrógeno , Océanos y Mares , Dinámica Poblacional , Sargassum/crecimiento & desarrollo , Temperatura
3.
PLoS One ; 5(6): e11372, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20613879

RESUMEN

BACKGROUND: As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. METHODOLOGY/PRINCIPAL FINDINGS: We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. CONCLUSIONS AND SIGNIFICANCE: This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.


Asunto(s)
Ácidos/química , Calcificación Fisiológica , Larva/crecimiento & desarrollo , Erizos de Mar/crecimiento & desarrollo , Temperatura , Animales , Concentración de Iones de Hidrógeno , Océanos y Mares , Erizos de Mar/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA