Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 720: 150142, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38788545

RESUMEN

The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Neoplasias de la Mama , Resistencia a Antineoplásicos , Laminina , Lapatinib , Receptor ErbB-2 , Humanos , Lapatinib/farmacología , Lapatinib/uso terapéutico , Línea Celular Tumoral , Laminina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Receptor ErbB-2/metabolismo , Femenino , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos
2.
Lab Invest ; 102(11): 1236-1244, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35907952

RESUMEN

Given the gut microbiome's rise as a potential frontier in cancer pathogenesis and therapy, leveraging microbial analyses in the study of breast tumor progression and treatment could unveil novel interactions between commensal bacteria and disease outcomes. In breast cancer, the Hedgehog (Hh) signaling pathway is a potential target for treatment due to its aberrant activation leading to poorer prognoses and drug resistance. There are limited studies that have investigated the influences of orally administered cancer therapeutics, such as Vismodegib (a pharmacological, clinically used Hh inhibitor) on the gut microbiota. Using a 4T1 mammary carcinoma mouse model and 16 S rRNA sequencing, we longitudinally mapped alterations in immunomodulating gut microbes during mammary tumor development. Next, we identified changes in the abundance of commensal microbiota in response to Vismodegib treatment of 4T1 mammary tumor-bearing mice. In addition to remodeling gut microbiota, Vismodegib treatment elicited an increase in proliferative CD8+ T cells in the colonic immune network, without any remarkable gastrointestinal-associated side effects. To our knowledge, this is the first study to assess longitudinal changes in the gut microbiome during mammary tumor development and progression. Our study also pioneers an investigation of the dynamic effects of an orally delivered Hh inhibitor on the gut microbiome and the gut-associated immune-regulatory adaptive effector CD8+ T cells. These findings inform future comprehensive studies on the consortium of altered microbes that can impact potential systemic immunomodulatory roles of Vismodegib.


Asunto(s)
Carcinoma , Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Proteínas Hedgehog , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad
3.
Cancer Metastasis Rev ; 40(2): 549-562, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34003425

RESUMEN

The application of cancer immunotherapy (CIT) in reinforcing anti-tumor immunity in response to carcinogenesis and metastasis has shown promising advances, along with new therapeutic challenges, in the landscape of cancer care. To promote tumor growth and metastasis, cancer cells aim to manipulate their microenvironment by mediating a crosstalk with various immune cells through the secretion of chemokines, cytokines, and other associated factors. Understanding this crosstalk is the key to discovering the best targets for improved immunotherapies and clinical strategies in cancer treatment. Here, we review the tumor immune crosstalk in cancer growth and metastasis. This review also highlights the development and expansion of CIT over the years. Moreover, we highlight clinical challenges and limitations involving immune-related adverse events, treating cancer patients with pre-existing autoimmune diseases, and the management of immunotherapy-induced treatment resistance. Possible clinical solutions to these current challenges in CIT are also proposed. Altogether, this review can contribute to the formation of pre-clinical and treatment-related strategies that further develop the availability and effectiveness of CIT.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Ensayos Clínicos como Asunto , Humanos , Neoplasias/patología , Radioinmunoterapia/métodos
4.
Nucleic Acids Res ; 48(18): 10342-10352, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32894284

RESUMEN

Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.


Asunto(s)
ADN Ribosómico/genética , Proteínas Hedgehog/genética , ARN Polimerasa I/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Proteína con Dedos de Zinc GLI1/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , ADN Ribosómico/efectos de la radiación , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , ARN Polimerasa I/efectos de la radiación , Radiación Ionizante , Ribosomas/genética , Ribosomas/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transcripción Genética/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
5.
Lab Invest ; 101(11): 1439-1448, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34267320

RESUMEN

The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Flavonoles/uso terapéutico , Neoplasias Pulmonares/prevención & control , ARN Polimerasa I/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Flavonoles/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , ARN Ribosómico/biosíntesis
6.
Cell Commun Signal ; 18(1): 63, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299434

RESUMEN

BACKGROUND: In this review, we describe how the cytoskeletal protein Merlin, encoded by the Neurofibromin 2 (NF2) gene, orchestrates developmental signaling to ensure normal ontogeny, and we discuss how Merlin deficiency leads to aberrant activation of developmental pathways that enable tumor development and malignant progression. MAIN BODY: Parallels between embryonic development and cancer have underscored the activation of developmental signaling pathways. Hippo, WNT/ß-catenin, TGF-ß, receptor tyrosine kinase (RTK), Notch, and Hedgehog pathways are key players in normal developmental biology. Unrestrained activity or loss of activity of these pathways causes adverse effects in developing tissues manifesting as developmental syndromes. Interestingly, these detrimental events also impact differentiated and functional tissues. By promoting cell proliferation, migration, and stem-cell like phenotypes, deregulated activity of these pathways promotes carcinogenesis and cancer progression. The NF2 gene product, Merlin, is a tumor suppressor classically known for its ability to induce contact-dependent growth inhibition. Merlin plays a role in different stages of an organism development, ranging from embryonic to mature states. While homozygous deletion of Nf2 in murine embryos causes embryonic lethality, Merlin loss in adult tissue is implicated in Neurofibromatosis type 2 disorder and cancer. These manifestations, cumulatively, are reminiscent of dysregulated developmental signaling. CONCLUSION: Understanding the molecular and cellular repercussions of Merlin loss provides fundamental insights into the etiology of developmental disorders and cancer and has the potential, in the long term, to identify new therapeutic strategies. Video Abstract.


Asunto(s)
Desarrollo Embrionario , Neoplasias/metabolismo , Neurofibromina 2 , Animales , Humanos , Neurofibromina 2/deficiencia , Neurofibromina 2/fisiología , Transducción de Señal
7.
Lab Invest ; 99(2): 260-270, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30420690

RESUMEN

Modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) promotes tumor cell survival, proliferation, epigenetic changes, angiogenesis, invasion, and metastasis. Here we demonstrate that in conditions of elevated glucose, there is increased expression of key drug resistance proteins (ABCB1, ABCG2, ERCC1, and XRCC1), all of which are regulated by the Hedgehog pathway. In elevated glucose conditions, we determined that the Hedgehog pathway transcription factors, GLI1 and GLI2, are modified by O-GlcNAcylation. This modification functionally enhanced their transcriptional activity. The activity of GLI was enhanced when O-GlcNAcase was inhibited, while inhibiting O-GlcNAc transferase caused a decrease in GLI activity. The metabolic impact of hyperglycemic conditions impinges on maintaining PKM2 in the less active state that facilitates the availability of glycolytic intermediates for biosynthetic pathways. Interestingly, under elevated glucose conditions, PKM2 directly influenced GLI activity. Specifically, abrogating PKM2 expression caused a significant decline in GLI activity and expression of drug resistance proteins. Cumulatively, our results suggest that elevated glucose conditions upregulate chemoresistance through elevated transcriptional activity of the Hedgehog/GLI pathway. Interfering in O-GlcNAcylation of the GLI transcription factors may be a novel target in controlling cancer progression and drug resistance of breast cancer.


Asunto(s)
Acetilglucosamina/metabolismo , Glucosa/metabolismo , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Hiperglucemia , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión a Hormona Tiroide
8.
Carcinogenesis ; 39(9): 1165-1175, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-29893810

RESUMEN

The NF2 gene encodes the tumor and metastasis suppressor protein Merlin. Merlin exerts its tumor suppressive role by inhibiting proliferation and inducing contact-growth inhibition and apoptosis. In the current investigation, we determined that loss of Merlin in breast cancer tissues is concordant with the loss of the inhibitory SMAD, SMAD7, of the TGF-ß pathway. This was reflected as dysregulated activation of TGF-ß signaling that co-operatively engaged with effectors of the Hippo pathway (YAP/TAZ/TEAD). As a consequence, the loss of Merlin in breast cancer resulted in a significant metabolic and bioenergetic adaptation of cells characterized by increased aerobic glycolysis and decreased oxygen consumption. Mechanistically, we determined that the co-operative activity of the Hippo and TGF-ß transcription effectors caused upregulation of the long non-coding RNA Urothelial Cancer-Associated 1 (UCA1) that disengaged Merlin's check on STAT3 activity. The consequent upregulation of Hexokinase 2 (HK2) enabled a metabolic shift towards aerobic glycolysis. In fact, Merlin deficiency engendered cellular dependence on this metabolic adaptation, endorsing a critical role for Merlin in regulating cellular metabolism. This is the first report of Merlin functioning as a molecular restraint on cellular metabolism. Thus, breast cancer patients whose tumors demonstrate concordant loss of Merlin and SMAD7 may benefit from an approach of incorporating STAT3 inhibitors.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Glucólisis/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína smad7/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibición de Contacto/genética , Genes Supresores de Tumor , Hexoquinasa/biosíntesis , Vía de Señalización Hippo , Humanos , Células MCF-7 , Neurofibromina 2/deficiencia , Consumo de Oxígeno/genética , ARN Largo no Codificante/biosíntesis , Factor de Transcripción STAT3/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
9.
Int J Cancer ; 141(6): 1091-1109, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28439901

RESUMEN

The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.


Asunto(s)
Biomimética/métodos , Neoplasias de la Mama/patología , Animales , Femenino , Humanos , Metástasis de la Neoplasia , Especificidad de Órganos , Microambiente Tumoral
10.
Mol Cancer ; 15: 24, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26988232

RESUMEN

Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Microambiente Tumoral , Animales , Humanos , Evasión Inmune , Modelos Biológicos , Neoplasias/irrigación sanguínea
11.
Bioorg Med Chem Lett ; 26(4): 1237-44, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26803204

RESUMEN

Cellular calmodulin binds to the SH2 domain of Src kinase, and upon Fas activation it recruits Src into the death-inducing signaling complex. This results in Src-ERK activation of cell survival pathway through which pancreatic cancer cells survive and proliferate. We had proposed that the inhibition of the interaction of calmodulin with Src-SH2 domain is an attractive strategy to inhibit the proliferation of pancreatic cancer. Thus we have performed screening of compound libraries by a combination of methods and identified some compounds (initial leads) that target the calmodulin-binding region on the SH2 domain and inhibit the proliferation of pancreatic cancer cells in in vitro assays. Most of these compounds also exhibited varying degrees of cytotoxicity when tested against immortalized breast epithelial cell line (MCF10A). These initial leads are likely candidates for development in targeted delivery of compounds to cancer cells without affecting normal cells.


Asunto(s)
Antineoplásicos/química , Familia-src Quinasas/antagonistas & inhibidores , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Calmodulina/química , Calmodulina/metabolismo , Calorimetría , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Resonancia Magnética Nuclear Biomolecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Unión Proteica , Dominios Homologos src , Familia-src Quinasas/metabolismo
12.
J Biol Chem ; 288(17): 11824-33, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23508962

RESUMEN

The Hedgehog (Hh) pathway is critical in normal development. However, it has been reported to be up-regulated in numerous cancers and implicated in tumorigenicity and metastasis. Classical activation of Hh signaling initiated by Hh ligands results in activation of Smoothened (SMOH) and culminates in the activation of the GLI transcription factors. Classical Hh signaling is autocrine or paracrine (involving interaction between tumor cells and their stroma/microenvironment). The tumor milieu is rich in inflammatory cytokines that can modulate tumor cell behavior. Here, we show for the first time that the Hh pathway can be nonclassically up-regulated by the inflammatory cytokine, osteopontin (OPN). OPN-initiated Akt-GSK3ß signaling mediates the subcellular distribution and activation of GLI1 resulting in the modulation of epithelial mesenchymal plasticity and drug resistance. Interestingly, the SMOH inhibitor cyclopamine was unable to uncouple the effects of OPN on Hh signaling, indicating that OPN nonclassically activates GLI-mediated transcription. Given the fact that OPN is itself transcriptionally activated upon Hh signaling, our current findings highlight the possibility of a feedforward vicious cycle such that the Hh pathway might be turned on nonclassically by stimuli from the tumor milieu. Thus, drugs that target the classical Hh ligand-mediated activation of Hh signaling may be compromised in their ability to interfere with the functioning of the pathway.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Hedgehog/genética , Humanos , Osteopontina/biosíntesis , Osteopontina/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Regulación hacia Arriba/genética , Proteína con Dedos de Zinc GLI1
13.
Mol Cancer ; 13: 200, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25174825

RESUMEN

BACKGROUND: N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD: Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3ß phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS: Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/ß-catenin signaling resulting from inactivation of GSK3ß. CONCLUSION: Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Algoritmos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Biología Computacional/métodos , Transición Epitelial-Mesenquimal , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células MCF-7 , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Transducción de Señal
14.
Int J Cancer ; 135(1): 1-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23929208

RESUMEN

Hedgehog (Hh) signaling regulates embryonic patterning and organ morphogenesis. It is also involved in regeneration and repair of tissues. Aberrant Hh pathway activation is a feature of many human malignancies. Classical Hh signaling is activated by Hh ligands that can signal in an autocrine or paracrine manner generating a tumor-stromal crosstalk. In contrast to canonical Hh signaling that culminates in the activation of GLI transcription factors, "noncanonical" Hh signaling does not involve GLI transcriptional activity. Several Hh pathway inhibitors have progressed to clinical trials, where the outcomes have not been very encouraging in many solid tumors. Here we discuss the likely role of "nonclassical" Hh-GLI signaling that is activated by growth factors and cytokines from the tumor and/or its microenvironment; these uncouple Hh signaling from the vital regulatory protein Smoothened, and result in the activation of GLI. While efforts are being made to target tumor-intrinsic Hh targets, it is imperative to acknowledge the role of the complex molecular networks and crosstalk between different components of the tumor microenvironment that can result in the emergence of resistance to conventional Hh therapy. These considerations have an important bearing on appreciating the need to mitigate the effects of tumor microenvironment to combat resistance to Hh inhibitors.


Asunto(s)
Proteínas Hedgehog/genética , Neoplasias/genética , Factores de Transcripción/genética , Microambiente Tumoral/genética , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Humanos , Ligandos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Proteína con Dedos de Zinc GLI1
15.
Cancer Immunol Res ; 12(3): 282-286, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38126910

RESUMEN

Immune cells in the tumor niche robustly influence disease progression. Remarkably, in cancer, developmental pathways are reenacted. Many parallels between immune regulation of embryonic development and immune regulation of tumor progression can be drawn, with evidence clearly supporting an immune-suppressive microenvironment in both situations. In these ecosystems, metabolic and bioenergetic circuits guide and regulate immune cell differentiation, plasticity, and functional properties of suppressive and inflammatory immune subsets. As such, there is an emerging pattern of intersection across the dynamic process of ontogeny and the ever-evolving tumor neighborhood. In this article, we focus on the convergence of immune programming during ontogeny and in the tumor microenvironment. Exemplifying dysregulation of Hedgehog (Hh) activity, a key player during ontogeny, we highlight a critical convergence of these fields and the metabolic axis of the nutrient sensing hexosamine biosynthetic pathway (HBP) that integrates glucose, glutamine, amino acids, acetyl CoA, and uridine-5'-triphosphate (UTP), culminating in the synthesis of UDP-GlcNAc, a metabolite that functions as a metabolic and bioenergetic sensor. We discuss an emerging pattern of immune regulation, orchestrated by O-GlcNAcylation of key transcriptional regulators, spurring suppressive activity of dysfunctional immune cells in the tumor microenvironment.


Asunto(s)
Proteínas Hedgehog , Neoplasias , Humanos , Proteínas Hedgehog/metabolismo , Ecosistema , Neoplasias/metabolismo , Glicosilación , Procesamiento Proteico-Postraduccional , Microambiente Tumoral
16.
Biomater Sci ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912649

RESUMEN

Breast cancer is the most common malignancy accounting for 12.5% of all newly diagnosed cancer cases across the globe. Breast cancer cells are known to metastasize to distant organs (i.e., brain), wherein they can exhibit a dormant phenotype for extended time periods. These dormant cancer cells exhibit reduced proliferation and therapeutic resistance. However, the mechanisms by which dormant cancer cells exhibit resistance to therapy, in the context of brain metastatic breast cancer (BMBC), is not well understood. Herein, we utilized hyaluronic acid (HA) hydrogels with varying stiffnesses to study drug responsiveness in dormant vs. proliferative BMBC cells. It was found that cells cultured on soft HA hydrogels (∼0.4 kPa) that showed a non-proliferative (dormant) phenotype exhibited resistance to Paclitaxel or Lapatinib. In contrast, cells cultured on stiff HA hydrogels (∼4.5 kPa) that showed a proliferative phenotype exhibited responsiveness to Paclitaxel or Lapatinib. Moreover, dormancy-associated resistance was found to be due to upregulation of the serum/glucocorticoid regulated kinase 1 (SGK1) gene which was mediated, in part, by the p38 signaling pathway. Accordingly, SGK1 inhibition resulted in a dormant-to-proliferative switch and response to therapy. Overall, our study demonstrates that matrix stiffness influences dormancy-associated therapy response mediated, in part, via the p38/SGK1 axis.

17.
STAR Protoc ; 5(2): 102962, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38492229

RESUMEN

Here, we present a protocol to generate dormant brain metastatic breast cancer (BMBC) spheroids utilizing hyaluronic acid (HA) hydrogels. We describe the steps for construction of spheroids from human BMBC cell lines MDA-MB-231Br and BT474Br3, HA hydrogel preparation, and spheroid plating on HA hydrogels and in suspension culture. We then detail the impact of HA hydrogel on the dormant phenotype of spheroids by measuring spheroid cross-sectional area, cell numbers, and EdU staining. For complete details on the use and execution of this protocol, please refer to Kondapaneni et al.1.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Técnicas de Cultivo de Célula , Ácido Hialurónico , Esferoides Celulares , Humanos , Esferoides Celulares/patología , Esferoides Celulares/metabolismo , Neoplasias de la Mama/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Femenino , Línea Celular Tumoral , Ácido Hialurónico/química , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química
18.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719798

RESUMEN

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Asunto(s)
Neoplasias de la Mama , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , ARN Polimerasa I , Tenipósido , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , ARN Polimerasa I/metabolismo , Tenipósido/farmacología , Animales , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
19.
Biochim Biophys Acta ; 1826(2): 400-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22750751

RESUMEN

Neurofibromatosis type 2 (NF2), characterized by tumors of the nervous system, is a result of functional loss of the NF2 gene. The NF2 gene encodes Merlin (moesin-ezrin-radixin-like protein), an ERM (Ezrin, Radixin, Moesin) protein family member. Merlin functions as a tumor suppressor through impacting mechanisms related to proliferation, apoptosis, survival, motility, adhesion, and invasion. Several studies have summarized the tumor intrinsic mutations in Merlin. Given the fact that tumor cells are not in isolation, but rather in an intricate, mutually sustaining synergy with their surrounding stroma, the dialog between the tumor cells and the stroma can potentially impact the molecular homeostasis and promote evolution of the malignant phenotype. This review summarizes the epigenetic modifications, transcript stability, and post-translational modifications that impact Merlin. We have reviewed the role of extrinsic factors originating from the tumor milieu that influence the availability of Merlin inside the cell. Information regarding Merlin regulation could lead to novel therapeutics by stabilizing Merlin protein in tumors that have reduced Merlin protein expression without displaying any NF2 genetic alterations.


Asunto(s)
Neurofibromina 2/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Epigénesis Genética , Humanos , Neurofibromina 2/química , Proteínas Proto-Oncogénicas c-akt/fisiología , Estabilidad del ARN
20.
Exp Cell Res ; 318(10): 1086-93, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22504047

RESUMEN

HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas del Choque Térmico HSP40/metabolismo , Respuesta al Choque Térmico , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/metabolismo , Animales , Células COS , Hipoxia de la Célula , Movimiento Celular , Núcleo Celular/metabolismo , Proliferación Celular , Chlorocebus aethiops , Proteínas del Choque Térmico HSP40/química , Humanos , Chaperonas Moleculares/química , Proteínas del Tejido Nervioso/química , Señales de Localización Nuclear/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA