Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(6): e111858, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36562188

RESUMEN

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Asunto(s)
Solanum lycopersicum , Fosforilación , Glutamato-Amoníaco Ligasa/metabolismo , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas
2.
Nature ; 596(7873): 525-530, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433941

RESUMEN

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

3.
Proc Natl Acad Sci U S A ; 121(36): e2403040121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190354

RESUMEN

ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Luz , Fosforilación , Hipocótilo/metabolismo , Hipocótilo/crecimiento & desarrollo , Temperatura , Morfogénesis
4.
Proc Natl Acad Sci U S A ; 120(16): e2301879120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036969

RESUMEN

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Brotes de la Planta , Factores de Transcripción/metabolismo , Citocininas/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Proc Natl Acad Sci U S A ; 120(39): e2310903120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729201

RESUMEN

Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl2) (or lithium/chlorine Li/Cl2) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl2 trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g-1 (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl2 battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl2 infiltrating the porous aCNS, consistent with Cl2 probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl2. The C-Cl, Cl2 species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl2, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl2 in porous carbon by XPS.

6.
Plant Physiol ; 195(2): 1025-1037, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38447060

RESUMEN

Global climate change is accompanied by carbon dioxide (CO2) enrichment and high temperature (HT) stress; however, how plants adapt to the combined environments and the underlying mechanisms remain largely unclear. In this study, we show that elevated CO2 alleviated plant sensitivity to HT stress, with significantly increased apoplastic glucose (Glc) levels in tomato (Solanum lycopersicum) leaves. Exogenous Glc treatment enhanced tomato resilience to HT stress under ambient CO2 conditions. Cell-based biolayer interferometry, subcellular localization, and Split-luciferase assays revealed that Glc bound to the tomato regulator of G protein signaling 1 (RGS1) and induced RGS1 endocytosis and thereby RGS1-G protein α subunit (GPA1) dissociation in a concentration-dependent manner. Using rgs1 and gpa1 mutants, we found that RGS1 negatively regulated thermotolerance and was required for elevated CO2-Glc-induced thermotolerance. GPA1 positively regulated the elevated CO2-Glc-induced thermotolerance. A combined transcriptome and chlorophyll fluorescence parameter analysis further revealed that GPA1 integrated photosynthesis- and photoprotection-related mechanisms to regulate thermotolerance. These results demonstrate that Glc-RGS1-GPA1 signaling plays a crucial role in the elevated CO2-induced thermotolerance in tomato. This information enhances our understanding of the Glc-G protein signaling function in stress resilience in response to global climate change and will be helpful for genetic engineering approaches to improve plant resilience.


Asunto(s)
Dióxido de Carbono , Glucosa , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Dióxido de Carbono/metabolismo , Glucosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calor , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas RGS/metabolismo , Proteínas RGS/genética , Termotolerancia/fisiología
7.
Plant Physiol ; 194(4): 2739-2754, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214105

RESUMEN

Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.


Asunto(s)
Hormonas Peptídicas , Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hormonas Peptídicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
8.
Plant Physiol ; 192(3): 2507-2522, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946197

RESUMEN

Phytosulfokine (PSK) is a danger-associated molecular pattern recognized by PHYTOSULFOKINE RECEPTOR 1 (PSKR1) and initiates intercellular signaling to coordinate different physiological processes, especially in the defense response to the necrotrophic fungus Botrytis cinerea. The activity of peptide receptors is largely influenced by different posttranslational modifications, which determine intercellular peptide signal outputs. To date, the posttranslational modification to PHYTOSULFOKINE RECEPTOR 1 (PSKR1) remains largely unknown. Here, we show that tomato (Solanum lycopersicum) PSKR1 is regulated by the ubiquitin/proteasome degradation pathway. Using multiple protein-protein interactions and ubiquitylation analyses, we identified that plant U-box E3 ligases PUB12 and PUB13 interacted with PSKR1, among which PUB13 caused PSKR1 ubiquitylation at Lys-748 and Lys-905 sites to control PSKR1 abundance. However, this posttranslational modification was attenuated upon addition of PSK. Moreover, the disease symptoms observed in PUB13 knock-down and overexpression lines demonstrated that PUB13 significantly suppressed the PSK-initiated defense response. This highlights an important regulatory function for the turnover of a peptide receptor by E3 ligase-mediated ubiquitylation in the plant defense response.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Plantas , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal/fisiología , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Toxicol Appl Pharmacol ; 492: 117113, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343043

RESUMEN

Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.

10.
Langmuir ; 40(1): 677-686, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38115196

RESUMEN

Graphene has a promising application prospect in integrated circuits and microelectromechanical systems, and sphere-plane contacts are their common contact types. At present, it is difficult to explain the time dependence of the adhesion force of the sphere-plane contact by conventional theory. Therefore, a single rough peak of sphere-plane contact adhesion force model based on variable water contact angle theory and Bradley contact theory was established; the aim is to reveal the changing law of graphene adhesion force. Then, the time dependence of the graphene surface adhesion force at different humidity levels was investigated by using an atomic force microscopy spherical probe. Finally, a quantitative comparative analysis of the theory and experiment was performed. The results show that the theoretical adhesion force was in good agreement with the experimental measurement results. The time dependence of graphene surface adhesion was not obvious within a relative humidity of 45-55%. When the relative humidity was greater than 65%, the graphene surface adhesion first increased and then decreased with dwell time and finally tended to be stable. Because of the increase in relative humidity, the capillary condensation effect increases, and then the adhesion force increases with the development of the meniscus. When the water film was generated on the sample surface, the adhesion force decreased until the meniscus achieved equilibrium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA