Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.205
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(22): 6165-6181.e22, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39243763

RESUMEN

Gasdermin-mediated inflammatory cell death (pyroptosis) can activate protective immunity in immunologically cold tumors. Here, we performed a high-throughput screen for compounds that could activate gasdermin D (GSDMD), which is expressed widely in tumors. We identified 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) as a direct and selective GSDMD agonist that activates GSDMD pore formation and pyroptosis without cleaving GSDMD. In mouse tumor models, pulsed and low-level pyroptosis induced by DMB suppresses tumor growth without harming GSDMD-expressing immune cells. Protection is immune-mediated and abrogated in mice lacking lymphocytes. Vaccination with DMB-treated cancer cells protects mice from secondary tumor challenge, indicating that immunogenic cell death is induced. DMB treatment synergizes with anti-PD-1. DMB treatment does not alter circulating proinflammatory cytokine or leukocyte numbers or cause weight loss. Thus, our studies reveal a strategy that relies on a low level of tumor cell pyroptosis to induce antitumor immunity and raise the possibility of exploiting pyroptosis without causing overt toxicity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de Unión a Fosfato , Piroptosis , Animales , Piroptosis/efectos de los fármacos , Ratones , Proteínas de Unión a Fosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Línea Celular Tumoral , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Gasderminas
2.
Nat Immunol ; 25(10): 1858-1870, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39169233

RESUMEN

Cancer cells edit gene expression to evade immunosurveillance. However, genome-wide studies of gene editing during early tumorigenesis are lacking. Here we used single-cell RNA sequencing in a breast cancer genetically engineered mouse model (GEMM) to identify edited genes without bias. Late tumors repressed antitumor immunity genes, reducing infiltrating immune cells and tumor-immune cell communications. Innate immune genes, especially interferon-stimulated genes, dominated the list of downregulated tumor genes, while genes that regulate cell-intrinsic malignancy were mostly unedited. Naive and activated CD8+ T cells in early tumors were replaced with exhausted or precursor-exhausted cells in late tumors. Repression of immune genes was reversed by inhibiting DNA methylation using low-dose decitabine, which suppressed tumor growth and restored immune control, increasing the number, functionality and memory of tumor-infiltrating lymphocytes and reducing the number of myeloid suppressor cells. Decitabine induced important interferon, pyroptosis and necroptosis genes, inflammatory cell death and immune control in GEMM and implanted breast and melanoma tumors.


Asunto(s)
Inmunidad Adaptativa , Metilación de ADN , Edición Génica , Inmunidad Innata , Animales , Ratones , Femenino , Humanos , Decitabina/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Linfocitos T CD8-positivos/inmunología , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos C57BL , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Línea Celular Tumoral , Ratones Transgénicos
3.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788748

RESUMEN

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Interferón Tipo I/metabolismo , Neumonía Viral/inmunología , Receptores Inmunológicos/metabolismo , Adolescente , Adulto , Anciano , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Neumonía Viral/virología , RNA-Seq , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
4.
Nature ; 627(8002): 67-72, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448698

RESUMEN

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324621

RESUMEN

Single-cell clustered regularly interspaced short palindromic repeats-sequencing (scCRISPR-seq) is an emerging high-throughput CRISPR screening technology where the true cellular response to perturbation is coupled with infected proportion bias of guide RNAs (gRNAs) across different cell clusters. The mixing of these effects introduces noise into scCRISPR-seq data analysis and thus obstacles to relevant studies. We developed scDecouple to decouple true cellular response of perturbation from the influence of infected proportion bias. scDecouple first models the distribution of gene expression profiles in perturbed cells and then iteratively finds the maximum likelihood of cell cluster proportions as well as the cellular response for each gRNA. We demonstrated its performance in a series of simulation experiments. By applying scDecouple to real scCRISPR-seq data, we found that scDecouple enhances the identification of biologically perturbation-related genes. scDecouple can benefit scCRISPR-seq data analysis, especially in the case of heterogeneous samples or complex gRNA libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , ARN Guía de Sistemas CRISPR-Cas
6.
Nature ; 583(7815): 286-289, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380510

RESUMEN

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Animales , Betacoronavirus/clasificación , COVID-19 , China , Quirópteros/virología , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Proteínas M de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Reservorios de Enfermedades/virología , Genómica , Especificidad del Huésped , Humanos , Pulmón/patología , Pulmón/virología , Malasia , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas de la Matriz Viral/genética , Zoonosis/transmisión , Zoonosis/virología
7.
Cancer Metastasis Rev ; 43(3): 1075-1093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38592427

RESUMEN

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Animales , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Linfocitos T/inmunología
8.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36642408

RESUMEN

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Interacciones Farmacológicas
9.
PLoS Pathog ; 19(5): e1011384, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196026

RESUMEN

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Pangolines/genética , SARS-CoV-2/genética , Virulencia , Filogenia , ARN Viral , Tropismo
10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149555

RESUMEN

SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5' untranslated region (5' UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5' UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2-induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus' own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.


Asunto(s)
Regiones no Traducidas 5'/genética , Evasión Inmune/genética , Biosíntesis de Proteínas , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Animales , Secuencia de Bases , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Evasión Inmune/efectos de los fármacos , Ratones Transgénicos , Modelos Biológicos , Oligonucleótidos Antisentido/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
11.
Nano Lett ; 24(32): 9832-9838, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101565

RESUMEN

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.

12.
J Cell Mol Med ; 28(3): e18073, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063077

RESUMEN

Diabetic kidney disease (DKD) can lead to accumulation of glucose upstream metabolites due to dysfunctional glycolysis. But the effects of accumulated glycolysis metabolites on podocytes in DKD remain unknown. The present study examined the effect of dihydroxyacetone phosphate (DHAP) on high glucose induced podocyte pyroptosis. By metabolomics, levels of DHAP, GAP, glucose-6-phosphate and fructose 1, 6-bisphosphate were significantly increased in glomeruli of db/db mice. Furthermore, the expression of LDHA and PKM2 were decreased. mRNA sequencing showed upregulation of pyroptosis-related genes (Nlrp3, Casp1, etc.). Targeted metabolomics demonstrated higher level of DHAP in HG-treated podocytes. In vitro, ALDOB expression in HG-treated podocytes was significantly increased. siALDOB-transfected podocytes showed less DHAP level, mTORC1 activation, reactive oxygen species (ROS) production, and pyroptosis, while overexpression of ALDOB had opposite effects. Furthermore, GAP had no effect on mTORC1 activation, and mTORC1 inhibitor rapamycin alleviated ROS production and pyroptosis in HG-stimulated podocytes. Our findings demonstrate that DHAP represents a critical metabolic product for pyroptosis in HG-stimulated podocytes through regulation of mTORC1 pathway. In addition, the results provide evidence that podocyte injury in DKD may be treated by reducing DHAP.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Dihidroxiacetona Fosfato/farmacología , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diabetes Mellitus/metabolismo
13.
J Am Chem Soc ; 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39454126

RESUMEN

Photogenerated charge separation is pivotal for effecting efficient photocatalytic reactions. Understanding this process with spatiotemporal resolution is vital for devising highly efficient photocatalysts. Here, we employed pump-probe transient reflection microscopy to directly observe the temporal and spatial evolution of photogenerated electrons and holes on the surface of facet-engineered bismuth vanadate (BiVO4) crystals. The findings suggest that the anisotropic built-in field of BiVO4 crystals propels the separation of photogenerated electrons and holes toward different facets through a two-step process across varying time scales. Photogenerated electrons and holes undergo ultrafast separation within ∼6 ps, with electrons transforming into localized small polarons toward the {010} facets of truncated BiVO4 octahedral crystals. However, the photogenerated holes prolong their separation up to ∼2000 ps in a drift-diffusion manner before ultimately accumulating on the {120} facets. This work provides a comprehensive visualization of spatiotemporal charge separation at the nano/microscale on semiconductor photocatalysts, which is beneficial for understanding the photocatalysis mechanism.

14.
Cancer Sci ; 115(9): 2998-3012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013843

RESUMEN

In our previous study, we found that small ubiquitin-related modifier (SUMO)-activating enzyme ubiquitin-associated-2 domain (UBA2) was upregulated in hepatocellular carcinoma (HCC) patients who were insensitive to chemoembolization. In this study, we aimed to investigate the role of UBA2 in HCC progression. Three cohorts were used to evaluate the efficacy of UBA2 as a prognostic factor for HCC. Our results indicated that UBA2 was associated with aggressive clinical behaviors and was a strong indicator of poor prognosis in HCC. In vitro experiments demonstrated that UBA2 accelerated cell growth, invasion, and migration. These results were further supported by in vivo experiments. RNA-sequencing analysis indicated NQO1 as a target of UBA2, with its levels altering following UBA2 manipulation. The results were verified by western blotting (WB) and quantitative PCR. The SUMOplot Analysis Program predicted lysine residue K240 as a modification target of UBA2, which was confirmed by immunoprecipitation (IP) assays. Subsequent mutation of NQO1 at K240 in HCC cell lines and functional assays revealed the significance of this modification. In addition, the oncogenic effect of UBA2 could be reversed by the SUMO inhibitor ML792 in vivo and in vitro. In conclusion, our study elucidated the regulatory mechanism of UBA2 in HCC and suggested that the SUMO inhibitor ML792 may be an effective combinatory treatment for patients with aberrant UBA2 expression.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , NAD(P)H Deshidrogenasa (Quinona) , Enzimas Activadoras de Ubiquitina , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Masculino , Línea Celular Tumoral , Animales , Femenino , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Ratones , Sistema de Señalización de MAP Quinasas , Persona de Mediana Edad , Pronóstico , Sumoilación , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos
15.
Apoptosis ; 29(5-6): 849-864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38117373

RESUMEN

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.


Asunto(s)
Vesículas Extracelulares , Inflamación , Mieloma Múltiple , Atrofia Muscular , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Receptor Toll-Like 4 , Factor de Transcripción ReIA , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Ratones , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Línea Celular Tumoral , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Masculino , Femenino
16.
Oncologist ; 29(8): e1012-e1019, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38642091

RESUMEN

INTRODUCTION: Fruquintinib is approved in China for patients with metastatic colorectal cancer (CRC) who progressed after 2 lines of chemotherapy. This postmarketing study was conducted to evaluate the safety of fruquintinib in the Chinese population, including previously treated patients with advanced CRC and other solid tumors. METHODS: Patients in the first cycle of fruquintinib or expected to start fruquintinib within a week were enrolled. Fruquintinib was administrated according to the label or per physicians' discretion. Patient characteristics and safety information were collected at baseline, 1 month, and 6 months after consent (or 30 days after the last dose). RESULTS: Overall, 3005 patients enrolled between April 24, 2019 and September 27, 2022. All enrolled patients received at least one dose of fruquintinib. Most patients had metastases at baseline. The median age was 60 years. More than half (64.0%) of the patients started fruquintinib at 5 mg, and the median treatment exposure was 2.7 months. Nearly one-third (32.5%) of patients with CRC received fruquintinib with concomitant antineoplastic agents. Treatment-emergent adverse events (TEAEs) leading to dose modification were reported in 626 (20.8%) patients, and 469 (15.6%) patients experienced TEAEs leading to treatment discontinuation. The most common grade ≥ 3 TEAEs were hypertension (6.6%), palmar-plantar erythrodysesthesia syndrome (2.2%), and platelet count decreased (1.0%). Combination therapy did not lead to excessive toxicities. CONCLUSIONS: The safety profile of fruquintinib in the real world was generally consistent with that in clinical studies, and the incidence of TEAEs was numerically lower than known VEGF/VEGFR inhibitor-related AEs. Fruquintinib exhibited manageable safety and tolerability in Chinese patients in the real-world setting.


Asunto(s)
Benzofuranos , Neoplasias Colorrectales , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Benzofuranos/efectos adversos , Benzofuranos/uso terapéutico , Benzofuranos/administración & dosificación , Adulto , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Quinazolinas/efectos adversos , Quinazolinas/uso terapéutico , Quinazolinas/administración & dosificación , China , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Pueblos del Este de Asia
17.
Oncologist ; 29(7): e922-e931, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38530254

RESUMEN

BACKGROUND: Atezolizumab plus bevacizumab (atezo-bev) has been recommended for advanced hepatocellular carcinoma (HCC). High-dose external beam radiotherapy (RT) is recognized for its excellent local tumor control. The efficacy and safety of concurrent atezo-bev with RT for highly advanced HCC has been minimally explored. METHODS: In this preliminary retrospective study, we assessed patients with highly advanced HCC, characterized by Vp4 portal vein thrombosis or tumors exceeding 50% of liver volume, who received concurrent atezo-bev and RT (group A). Group A included 13 patients who received proton radiation at a dose of 72.6 GyE in 22 fractions, and one patient who received photon radiation at a dose of 54 Gy in 18 fractions. This group was compared with 34 similar patients treated atezo-bev alone as a control (group B). The primary objectives were to evaluate the objective response rate (ORR), overall survival (OS), and safety. RESULTS: Baseline characteristics were similar between groups, except for a higher incidence of Vp4 portal vein thrombosis in group A (78.6% vs. 21.4%, P = .05). Group A achieved a higher ORR (50.0% vs. 11.8%, P < .01) and a longer OS (not reached vs. 5.5 months, P = .01) after a median follow-up of 5.2 months. Multivariate analysis indicated that concurrent RT independently favored longer OS (hazard ratio: 0.18; 95% CI, 0.05-0.63, P < .01). Group A did not increase any grade adverse events (78.6% vs. 58.8%, P = .19) or severe adverse events of grade ≥ 3 (14.3% vs. 14.7%, P = .97) compared to group B. CONCLUSIONS: The concurrent high-dose external beam radiotherapy appears to safely enhance the effectiveness of atezolizumab plus bevacizumab for highly advanced patients with HCC. Further studies are warranted to confirm these findings.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Bevacizumab , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Femenino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/métodos , Adulto
18.
Clin Chem ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431962

RESUMEN

BACKGROUND: cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. METHODS: We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool's diagnostic capability. RESULTS: Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. CONCLUSIONS: Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.

19.
Blood ; 139(23): 3376-3386, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338773

RESUMEN

Few studies have described chimeric antigen receptor (CAR) T-cell therapy for patients with B-cell acute lymphoblastic leukemia (B-ALL) with central nervous system leukemia (CNSL) because of concerns regarding poor response and treatment-related neurotoxicity. Our study included 48 patients with relapsed/refractory B-ALL with CNSL to evaluate the efficacy and safety of CD19-specific CAR T cell-based therapy. The infusion resulted in an overall response rate of 87.5% (95% confidence interval [CI], 75.3-94.1) in bone marrow (BM) disease and remission rate of 85.4% (95% CI, 72.8-92.8) in CNSL. With a median follow-up of 11.5 months (range, 1.3-33.3), the median event-free survival was 8.7 months (95% CI, 3.7-18.8), and the median overall survival was 16.0 months (95% CI, 13.5-20.1). The cumulative incidences of relapse in BM and CNS diseases were 31.1% and 11.3%, respectively, at 12 months (P = .040). The treatment was generally well tolerated, with 9 patients (18.8%) experiencing grade ≥3 cytokine release syndrome. Grade 3 to 4 neurotoxic events, which developed in 11 patients (22.9%), were associated with a higher preinfusion disease burden in CNS and were effectively controlled under intensive management. Our results suggest that CD19-specific CAR T cell-based therapy can induce similar high response rates in both BM and CNS diseases. The duration of remission in CNSL was longer than that in BM disease. CD19 CAR T-cell therapy may provide a potential treatment option for previously excluded patients with CNSL, with manageable neurotoxicity. The clinical trials were registered at www.clinicaltrials.gov as #NCT02782351 and www.chictr.org.cn as #ChiCTR-OPN-16008526.


Asunto(s)
Linfoma de Burkitt , Neoplasias del Sistema Nervioso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Enfermedad Aguda , Antígenos CD19 , Linfoma de Burkitt/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Síndrome de Liberación de Citoquinas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T
20.
Cytotherapy ; 26(8): 832-841, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38625072

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor-T (CAR-T) cells have exhibited remarkable efficacy in treating refractory or relapsed multiple myeloma (R/R MM). Although obesity has a favorable value in enhancing the response to immunotherapy, less is known about its predictive value regarding the efficacy and prognosis of CAR-T cell immunotherapy. METHODS: We conducted a retrospective study of 111 patients with R/R MM who underwent CAR-T cell treatment. Using the body mass index (BMI) classification, the patients were divided into a normal-weight group (73/111) and an overweight group (38/111). We investigated the effect of BMI on CAR-T cell therapy outcomes in patients with R/R MM. RESULTS: The objective remission rates after CAR-T cell infusion were 94.7% and 89.0% in the overweight and normal-weight groups, respectively. The duration of response and overall survival were not significant difference between BMI groups. Compared to normal-weight patients, overweight patients had an improved median progression-free survival. There was no significant difference in cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome between the subgroups. In terms of hematological toxicity, the erythrocyte, hemoglobin, platelet, leukocyte and neutrophil recovery was accelerated in the overweight group. Fewer patients in the overweight group displayed moderate percent CD4 and CD4/CD8 ratios compared to the normal-weight group. Furthermore, the percent CD4 ratios were positively correlated with the levels of cytokines [interleukin-2 (IL-2) (day 14), interferon gamma (IFN-γ) (day 7) and tumor necrosis factor alpha (TNF-α) (days 14 and 21)] after cells infusion. On the other hand, BMI was positively associated with the levels of IFN-γ (day 7) and TNF-α (days 14 and 21) after CAR-T cells infusion. CONCLUSIONS: Overall, this study highlights the potential beneficial effect of a higher BMI on CAR-T cell therapy outcomes.


Asunto(s)
Índice de Masa Corporal , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/métodos , Anciano , Estudios Retrospectivos , Adulto , Receptores Quiméricos de Antígenos/inmunología , Resultado del Tratamiento , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA