Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(1): 106-123.e7, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159573

RESUMEN

When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin ß1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.


Asunto(s)
Cálculos Renales , Riñón , Ratones , Animales , Macrófagos
2.
Immunity ; 55(8): 1466-1482.e9, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863346

RESUMEN

Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.


Asunto(s)
Hipertensión , Microglía , Animales , Hipertensión/metabolismo , Ratones , Neuronas/fisiología , Potasio/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
3.
Nat Immunol ; 19(6): 547-560, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777223

RESUMEN

The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Interleucina-5/biosíntesis , Macrófagos Alveolares/inmunología , Células Th2/inmunología , Animales , Aspergilosis Broncopulmonar Alérgica/genética , Proteínas Adaptadoras de Señalización CARD/genética , Humanos , Interleucina-5/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Polimorfismo de Nucleótido Simple , Transducción de Señal/inmunología
4.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865265

RESUMEN

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Asunto(s)
Electroporación , Inmunoterapia , Vacunas de ADN , Animales , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Electroporación/métodos , Ratones , Inmunoterapia/métodos , Administración Cutánea , Neoplasias/terapia , Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Células Presentadoras de Antígenos/inmunología , Femenino , Ratones Endogámicos C57BL , Humanos , Vacunación/métodos
5.
EMBO Rep ; 25(3): 971-990, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279020

RESUMEN

Tumor metastasis involves cells migrating directionally in response to external chemical signals. Reactive oxygen species (ROS) in the form of H2O2 has been demonstrated as a chemoattractant for neutrophils but its spatial characteristics in tumor microenvironment and potential role in tumor cell dissemination remain unknown. Here we investigate the spatial ROS distribution in 3D tumor spheroids and identify a ROS concentration gradient in spheroid periphery, which projects into a H2O2 gradient in tumor microenvironment. We further reveal the role of H2O2 gradient to induce chemotaxis of tumor cells by activating Src and subsequently inhibiting RhoA. Finally, we observe that the absence of mitochondria cristae remodeling proteins including the mitochondria-localized actin motor Myosin 19 (Myo19) enhances ROS gradient and promotes tumor dissemination. Myo19 downregulation is seen in many tumors, and Myo19 expression is negatively associated with tumor metastasis in vivo. Together, our study reveals the chemoattractant role of tumor microenvironmental ROS and implies the potential impact of mitochondria cristae disorganization on tumor invasion and metastasis.


Asunto(s)
Quimiotaxis , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Miosinas/metabolismo , Factores Quimiotácticos
6.
Plant Physiol ; 194(4): 2679-2696, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38146904

RESUMEN

Drought is a major adverse environmental factor that plants face in nature but the molecular mechanism by which plants transduce stress signals and further endow themselves with tolerance remains unclear. Malectin/malectin-like domains containing receptor-like kinases (MRLKs) have been proposed to act as receptors in multiple biological signaling pathways, but limited studies show their roles in drought-stress signaling and tolerance. In this study, we demonstrate OsMRLK63 in rice (Oryza sativa L.) functions in drought tolerance by acting as the receptor of 2 rapid alkalization factors, OsRALF45 and OsRALF46. We show OsMRLK63 is a typical receptor-like kinase that positively regulates drought tolerance and reactive oxygen species (ROS) production. OsMRLK63 interacts with and phosphorylates several nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with the primarily phosphorylated site at Ser26 in the N-terminal of RESPIRATORY BURST OXIDASE HOMOLOGUE A (OsRbohA). The application of the 2 small signal peptides (OsRALF45/46) on rice can greatly alleviate the dehydration of plants induced by mimic drought. This function depends on the existence of OsMRLK63 and the NADPH oxidase-dependent ROS production. The 2 RALFs interact with OsMRLK63 by binding to its extracellular domain, suggesting they may act as drought/dehydration signal sensors for the OsMRLK63-mediated process. Our study reveals a OsRALF45/46-OsMRLK63-OsRbohs module which contributes to drought-stress signaling and tolerance in rice.


Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/metabolismo , Resistencia a la Sequía , Deshidratación , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438808

RESUMEN

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Asunto(s)
Aprendizaje , Microglía , Calcio , Neuronas GABAérgicas , Interleucina-1beta , Sinapsis
8.
Small ; 20(11): e2306638, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37922530

RESUMEN

The achievement of rapid multiplexed protein imaging is limited by the use of stimulating reagents, extensive incubating and washing steps, and the low fluorescence intensity of targets. In this study, sequentially-activated DNA tags are developed and combined them with primary antibodies using signal enhancement strategies to create sequentially-activated antibodies (SAAs). These SAAs enable rapid, wash-free sequential imaging of different protein targets. The samples are pre-processed to label all targets of interest with SAAs simultaneously, and the signal is turned ON for only one target in each stage. The sequential imaging of multiple targets is achieved through wash-free strand displacement reactions that exhibit rapid kinetics with t1/2  < 10 s in a cellular context. Remarkably, this method successfully demonstrates sequential imaging of nine different protein targets within just a few minutes. This all-in-one platform for multiplexed protein imaging holds great promise for diverse applications in immunofluorescence imaging.


Asunto(s)
Anticuerpos , Proteínas , Anticuerpos/metabolismo , ADN , Diagnóstico por Imagen
9.
Small ; : e2401578, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616738

RESUMEN

Photo enhanced oxygen evolution reaction has recently emerged as an advanced strategy with great application prospects for highly efficient energy conversion and storage. In the course of photo enhanced oxygen evolution reactions, the other works focus has predominantly centered on catalysts while inadvertently overlooking the pivotal role of photo. Consequently, this manuscript embarks upon a comprehensive review of recent advancements in photo-driven, aiming to illuminate this critical dimension. A detailed introduction to the photothermal effect, photoelectronic effect, photon-induced surface plasmon resonance, photo and heterojunction, photo-induced reversible geometric conversion, photo-induced energy barrier reduction, photo-induced chemical effect, photo-charging, and the synthesis of laser/photo-assisted catalysts, offering prospects for the development of each case is provided. A detailed introduction to the photothermal effect, photoelectronic effect, photon-induced surface plasmon resonance, photo and heterojunction, photo-induced reversible geometric conversion, photo-induced energy barrier reduction, photo-induced chemical effect, photo-charging, and the synthesis of laser/photo-assisted catalysts is provided. At the same time, the overpotential and Tafel slope of some catalysts mentioned above at 10 mA cm-2 is collected, and calculated the lifting efficiency of light on them, offering prospects for the development of each case.

10.
Small ; : e2310461, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396201

RESUMEN

Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.

11.
Opt Express ; 32(3): 4167-4179, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297623

RESUMEN

The recent emerging appearance of optical analogs of magnetic quasiparticles, i.e., optical skyrmions constructed via spin, field, and Stokes vectors, has garnered substantial interest from deep-subwavelength imaging and quantum entanglement. Here, we investigate systematically the topological state transitions of skyrmionic beams constructed by the Stokes vectors in the focusing configuration. We theoretically demonstrated that in the weak focusing, the skyrmion topological number is protected. Whereas, in the tight focusing, a unique topological transformation with skyrmion number variation is exhibited for the optical skyrmion, anti-skyrmion, and 2nd-order skyrmion structures. The significant difference between the topological state transitions of these two cases originates from the transformation from the paraxial optical system to the nonparaxial optical system, and the approximate two-dimensional polarization structure to the three-dimensional polarization structure. The results provide new insights into the topological state transitions in topological structures, which promote applications in information processing, data storage, and free-space optical communications.

12.
Chemistry ; 30(25): e202303989, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38345999

RESUMEN

Benzobicyclo[3.2.1]octane is a cage-like unique motif containing a bicyclo[3.2.1]octane structure fused with at least one benzene ring. It is found in various natural products that exhibit structural complexities and important biological activities. The total synthesis of natural products possessing this challenging structure has received considerable attention, and great advances have been made in this field during the past 15 years. This review summarizes thus far achieved chemical syntheses and synthetic studies of natural compounds featuring the benzobicyclo[3.2.1]octane core. It focuses on strategic approaches constructing the bridged structure, aiming to provide a useful reference for inspiring further advancements in strategies and total syntheses of natural products with such a framework.

13.
FASEB J ; 37(1): e22699, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520055

RESUMEN

Cardiac fibrosis is an essential pathological process in pressure overload (PO)-induced heart failure. Recently, myocyte-fibroblast communication is proven to be critical in heart failure, in which, pathological growth of cardiomyocytes (CMs) may promote fibrosis via miRNAs-containing exosomes (Exos). Peli1 regulates the activation of NF-κB and AP-1, which has been demonstrated to engage in miRNA transcription in cardiomyocytes. Therefore, we hypothesized that Peli1 in CMs regulates the activation of cardiac fibroblasts (CFs) through an exosomal miRNA-mediated paracrine mechanism, thereby promoting cardiac fibrosis. We found that CM-conditional deletion of Peli1 improved PO-induced cardiac fibrosis. Moreover, Exos from mechanical stretch (MS)-induced WT CMs (WT MS-Exos) promote activation of CFs, Peli1-/- MS-Exos reversed it. Furthermore, miRNA microarray and qPCR analysis showed that miR-494-3p was increased in WT MS-Exos while being down regulated in Peli1-/- MS-Exos. Mechanistically, Peli1 promoted miR-494-3p expression via NF-κB/AP-1 in CMs, and then miR-494-3p induced CFs activation by inhibiting PTEN and amplifying the phosphorylation of AKT, SMAD2/3, and ERK. Collectively, our study suggests that CMs Peli1 contributes to myocardial fibrosis via CMs-derived miR-494-3p-enriched exosomes under PO, and provides a potential exosomal miRNA-based therapy for cardiac fibrosis.


Asunto(s)
Comunicación Celular , Exosomas , Insuficiencia Cardíaca , Miocitos Cardíacos , Humanos , Exosomas/genética , Exosomas/metabolismo , Fibrosis/etiología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción AP-1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cardiopatías/etiología , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Comunicación Celular/genética , Comunicación Celular/fisiología
14.
Brain Behav Immun ; 115: 705-717, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992789

RESUMEN

Pericyte is an indispensable cellular constituent of blood-brain barrier (BBB) and its homeostasis heavily rely on PDGFB-PDGFRß signaling. However, the primary cellular sources of PDGFB in the central nervous system (CNS) are unclear. Microglia is not considered a component of BBB and its role in maintaining BBB integrity in steady state is controversial. In this study, by analyzing transcriptomic data and performing in situ hybridization, we revealed a transition of the primary central PDGFB producers from endothelial cells in newborns to microglia in adults. Acute loss of microglial PDGFB profoundly impaired BBB integrity in adult but not newborn mice, and thus, adult mice deficient of microglial PDGFB could not survive from a sublethal endotoxin challenge due to rampant microhemorrhages in the CNS. In contrast, acute abrogation of endothelial PDGFB had minimal effects on the BBB of adult mice but led to a severe impairment of CNS vasculature in the neonates. Moreover, we found that microglia would respond to a variety of BBB insults by upregulating PDGFB expression. These findings underscore the physiological importance of the microglia-derived PDGFB to the BBB integrity of adult mice both in steady state and under injury.


Asunto(s)
Barrera Hematoencefálica , Microglía , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo
15.
Protein Expr Purif ; 216: 106416, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38104790

RESUMEN

A major cellobiohydrolase of Neurospora crassa CBH2 was successfully expressed in Pichia pastoris. The maximum Avicelase activity in shake flask among seven transformants which selected on 4.0 g/L G418 plates was 0.61 U/mL. The optimal pH and temperature for Avicelase activity of the recombinant CBH2 were determined to be 4.8 and 60 °C, respectively. The new CBH2 maintained 63.5 % Avicelase activity in the range of pH 4.0-10.4, and 60.2 % Avicelase activity in the range of 30-90 °C. After incubation at 70-90 °C for 1 h, the Avicelase activity retained 60.5 % of its initial activity. The presence of Zn2+, Ca2+ or Cd2+ enhanced the Avicelase activity of the CBH2, of which Cd2+ at 10 mM causing the highest increase. The recombinant CBH2 was used to enhance the Avicel hydrolysis by improving the exo-exo-synergism between CBH2 and CBH1 in N.crassa cellulase. The enzymatic hydrolysis yield was increased by 38.1 % by adding recombinant CBH2 and CBH1, and the yield was increased by 215.4 % when the temperature is raised to 70 °C. This work provided a CBH2 with broader pH range and better heat resistance, which is a potential enzyme candidate in food, textile, pulp and paper industries, and other industrial fields.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Neurospora crassa , Saccharomycetales , Celulosa 1,4-beta-Celobiosidasa/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Cadmio , Pichia/genética , Pichia/metabolismo , Clonación Molecular , Proteínas Recombinantes
16.
J Nat Prod ; 87(1): 98-103, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38170464

RESUMEN

Tetrapetalones make up a unique class of pentaketide ansamycins that feature a tetracyclic skeleton and exhibit potent inhibitory activities against soybean lipoxygenase. However, a detailed biosynthetic route to tetrapetalones has not been published. Herein we report the activation of the tetrapetalones' biosynthetic gene cluster (tpt) in Streptomyces sp. S10 by promoter engineering along with constitutive expression of pathway-specific regulator genes, leading to the discovery of seven new derivatives, tetrapetalones E-K (2-8), and the known tetrapetalone A (1). In vivo gene deletion experiments and heterologous expression of the minimized tpt cluster in Streptomyces albus J1074 suggest that the tetracyclic system of tetrapetalones is probably formed spontaneously, and the regioselective glycosylation of tetrapetalones at the C-9 hydroxy group with d-rhamnose or d-rhodinose was catalyzed by the glycosyltransferase Tpt14.


Asunto(s)
Streptomyces griseus , Streptomyces griseus/genética , Familia de Multigenes , Glicosilación , Glycine max
17.
Environ Res ; 246: 118533, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417660

RESUMEN

Real-time flood forecasting is one of the most pivotal measures for flood management, and real-time error correction is a critical step to guarantee the reliability of forecasting results. However, it is still challenging to develop a robust error correction technique due to the limited cognitions of catchment mechanisms and multi-source errors across hydrological modeling. In this study, we proposed a hydrologic similarity-based correction (HSBC) framework, which hybridizes hydrological modeling and multiple machine learning algorithms to advance the error correction of real-time flood forecasting. This framework can quickly and accurately retrieve similar historical simulation errors for different types of real-time floods by integrating clustering, supervised classification, and similarity retrieval methods. The simulation errors "carried" by similar historical floods are extracted to update the real-time forecasting results. Here, combining the Xin'anjiang model-based forecasting platform with k-means, K-nearest neighbor (KNN), and embedding based subsequences matching (EBSM) method, we constructed the HSBC framework and applied it to China's Dufengkeng Basin. Three schemes, including "non-corrected" (scheme 1), "auto-regressive (AR) corrected" (scheme 2), and "HSBC corrected" (scheme 3), were built for comparison purpose. The results indicated the following: 1) the proposed framework can successfully retrieval similar simulation errors with a considerable retrieval accuracy (2.79) and time consumption (228.18 s). 2) four evaluation metrics indicated that the HSBC-based scheme 3 performed much better than the AR-based scheme 2 in terms of both the whole flood process and the peak discharge; 3) the proposed framework overcame the shortcoming of the AR model that have poor correction for the flood peaks and can provide more significant correction for the floods with bad forecasting performance. Overall, the HSBC framework demonstrates the advancement of benefiting the real-time error correction from hydrologic similarity theory and provides a novel methodological alternative for flood control and water management in wider areas.


Asunto(s)
Inundaciones , Aprendizaje Automático , Reproducibilidad de los Resultados , Simulación por Computador , Predicción
18.
Plant Cell Rep ; 43(5): 128, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652306

RESUMEN

KEY MESSAGE: GWAS identified six loci at 25 kb downstream of WAK2, a crucial gene for cell wall and callus formation, enabling development of a SNP marker for enhanced callus induction potential. Efficient callus induction is vital for successful oil palm tissue culture, yet identifying genomic loci and markers for early detection of genotypes with high potential of callus induction remains unclear. In this study, immature male inflorescences from 198 oil palm accessions (dura, tenera and pisifera) were used as explants for tissue culture. Callus induction rates were collected at one-, two- and three-months after inoculation (C1, C2 and C3) as phenotypes. Resequencing generated 11,475,258 high quality single nucleotide polymorphisms (SNPs) as genotypes. GWAS was then performed, and correlation analysis revealed a positive association of C1 with both C2 (R = 0.81) and C3 (R = 0.50), indicating that C1 could be used as the major phenotype for callus induction rate. Therefore, only significant SNPs (P ≤ 0.05) in C1 were identified to develop markers for screening individuals with high potential of callus induction. Among 21 significant SNPs in C1, LD block analysis revealed six SNPs on chromosome 12 (Chr12) potentially linked to callus formation. Subsequently, 13 SNP markers were identified from these loci and electrophoresis results showed that marker C-12 at locus Chr12_12704856 can be used effectively to distinguish the GG allele, which showed the highest probability (69%) of callus induction. Furthermore, a rapid SNP variant detection method without electrophoresis was established via qPCR-based melting curve analysis. Our findings facilitated marker-assisted selection for specific palms with high potential of callus induction using immature male inflorescence as explant, aiding ortet palm selection in oil palm tissue culture.


Asunto(s)
Arecaceae , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Arecaceae/genética , Técnicas de Cultivo de Tejidos/métodos , Fenotipo , Genotipo , Sitios Genéticos/genética , Desequilibrio de Ligamiento/genética , Sitios de Carácter Cuantitativo/genética
19.
Blood Purif ; 53(6): 486-492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198755

RESUMEN

INTRODUCTION: The objective of this study was to report our experience of angioplasty with paclitaxel-coated balloon (PCB) versus common balloon (CB) for the treatment of repeated failing vascular access. METHODS: Retrospective, single-center analysis consisting of 88 patients treated with percutaneous transluminal angioplasty in the period from October 2020 through December 2021. Patients were divided into two groups according to the type of treatment as PCB (n = 41) and CB (n = 47). We analyzed target lesion primary patency and vascular access primary patency for 6 months and the rate of complications. RESULTS: There was no significant difference in the target lesion primary patency which was similar for 6 months between the two groups (PCB group vs. CB group at 1, 3, and 6 months; 95.12 vs. 89.36% (p = 0.55), 75.61 versus 74.47% (p = 0.90), 53.66% versus 63.83% (p = 0.33), respectively). Similarly, vascular access primary patency in the PCB group and CB group was 90.24 and 89.36% (p = 0.83), respectively, at 1 month, 65.85 and 68.09% (p = 0.82), respectively, at 3 months, 39.02 and 53.19% (p = 0.18), respectively, at 6 months. There were no major complications after endovascular treatment. CONCLUSION: Compared to CB angioplasty, PCB angioplasty has no short-term patency benefit in the treatment of vascular access repeated stenosis.


Asunto(s)
Angioplastia de Balón , Paclitaxel , Diálisis Renal , Grado de Desobstrucción Vascular , Humanos , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Estudios Retrospectivos , Masculino , Femenino , Angioplastia de Balón/métodos , Persona de Mediana Edad , Anciano , Oclusión de Injerto Vascular/etiología , Oclusión de Injerto Vascular/terapia , Dispositivos de Acceso Vascular , Materiales Biocompatibles Revestidos , Constricción Patológica
20.
Proc Natl Acad Sci U S A ; 118(6)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526684

RESUMEN

Spin-momentum locking, a manifestation of topological properties that governs the behavior of surface states, was studied intensively in condensed-matter physics and optics, resulting in the discovery of topological insulators and related effects and their photonic counterparts. In addition to spin, optical waves may have complex structure of vector fields associated with orbital angular momentum or nonuniform intensity variations. Here, we derive a set of spin-momentum equations which describes the relationship between the spin and orbital properties of arbitrary complex electromagnetic guided modes. The predicted photonic spin dynamics is experimentally verified with four kinds of nondiffracting surface structured waves. In contrast to the one-dimensional uniform spin of a guided plane wave, a two-dimensional chiral spin swirl is observed for structured guided modes. The proposed framework opens up opportunities for designing the spin structure and topological properties of electromagnetic waves with practical importance in spin optics, topological photonics, metrology and quantum technologies and may be used to extend the spin-dynamics concepts to fluid, acoustic, and gravitational waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA