Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.104
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32553276

RESUMEN

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Asunto(s)
Células Dendríticas/inmunología , Queratinocitos/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Poliaminas/metabolismo , Psoriasis/patología , ARN/inmunología , Células 3T3 , Animales , Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Arginina/metabolismo , Autoantígenos/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Células HaCaT , Humanos , Interleucina-17/metabolismo , Macaca fascicularis , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/genética , Fosforilación , Piel/patología , Receptor Toll-Like 7/inmunología
2.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488018

RESUMEN

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cigoto/metabolismo , Ciclo Celular/genética , Polaridad Celular/genética , Embrión no Mamífero/metabolismo
3.
Nat Methods ; 21(2): 301-310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167656

RESUMEN

Light-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM). We apply this approach to two unique processes: cell division and immune synapse formation. In each context, smartLLSM provides population-level statistics across thousands of cells and autonomously captures multicolor three-dimensional datasets or four-dimensional time-lapse movies of rare events at rates that dramatically exceed human capabilities. From this, we quantify the effects of Taxol dose on spindle structure and kinetochore dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and lytic granule polarization at the immune synapse. Overall, smartLLSM efficiently detects rare events within heterogeneous cell populations and records these processes with high spatiotemporal four-dimensional imaging over statistically significant replicates.


Asunto(s)
Inteligencia Artificial , Microscopía , Humanos , Microscopía/métodos , Imagenología Tridimensional/métodos , Sinapsis
4.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37129004

RESUMEN

Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias de Ratones , Animales , Ratones , Sistemas CRISPR-Cas/genética , Proteínas/genética , Técnicas de Sustitución del Gen , Edición Génica/métodos , Mamíferos/genética
5.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409269

RESUMEN

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Asunto(s)
Cartílago , Condrogénesis , Animales , Ratones , Proteína con Dedos de Zinc GLI1/genética , Condrogénesis/genética , Condrocitos , Osteogénesis , Diferenciación Celular
6.
J Immunol ; 212(11): 1609-1620, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768409

RESUMEN

In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.


Asunto(s)
Infecciones por VIH , VIH-1 , Reconstitución Inmune , Humanos , VIH-1/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Reconstitución Inmune/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos T CD4-Positivos/inmunología
7.
Proc Natl Acad Sci U S A ; 120(37): e2308685120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669374

RESUMEN

Here, we provide mechanistic support for the involvement of the CYP9A subfamily of cytochrome P450 monooxygenases in the detoxification of host plant defense compounds and chemical insecticides in Spodoptera exigua and Spodoptera frugiperda. Our comparative genomics shows that a large cluster of CYP9A genes occurs in the two species but with significant differences in its contents, including several species-specific duplicates and substantial sequence divergence, both between orthologs and between duplicates. Bioassays of CRISPR-Cas9 knockouts of the clusters show that, collectively, the CYP9As can detoxify two furanocoumarin plant defense compounds (imperatorin and xanthotoxin) and insecticides representing three different chemotypes (pyrethroids, avermectins, and oxadiazines). However, in vitro metabolic assays of heterologously expressed products of individual genes show several differences between the species in the particular CYP9As with activities against these compounds. We also find that the clusters show tight genetic linkage with high levels of pyrethroid resistance in field strains of the two species. We propose that their divergent amplifications of the CYP9A subfamily have not only contributed to the development of the broad host ranges of these species over long evolutionary timeframes but also supplied them with diverse genetic options for evolving resistance to chemical insecticides in the very recent past.


Asunto(s)
Insecticidas , Xenobióticos , Biosíntesis de Péptidos , Metabolismo Secundario , Sistema Enzimático del Citocromo P-450
8.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340793

RESUMEN

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Transcripción Genética , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Inmunoprecipitación , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepción de Quorum , Sistemas de Mensajero Secundario , Técnicas del Sistema de Dos Híbridos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
9.
Plant J ; 117(2): 464-482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872890

RESUMEN

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Asunto(s)
Glucósidos , Fenoles , Rhodiola , Rhodiola/genética , Rhodiola/metabolismo , Vías Biosintéticas , Tamaño del Genoma , Cromosomas , Evolución Molecular
10.
PLoS Pathog ; 19(1): e1011110, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689471

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.


Asunto(s)
Biotina , Infecciones por Pseudomonas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/química , Biotina/metabolismo , Pseudomonas aeruginosa/metabolismo
11.
Nature ; 569(7754): 131-135, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30996350

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Factor Inhibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Comunicación Paracrina , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Carcinogénesis/genética , Carcinoma Ductal Pancreático/diagnóstico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Humanos , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/sangre , Masculino , Espectrometría de Masas , Ratones , Neoplasias Pancreáticas/diagnóstico , Comunicación Paracrina/efectos de los fármacos , Receptores OSM-LIF/deficiencia , Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo , Microambiente Tumoral
12.
Nucleic Acids Res ; 51(22): 12140-12149, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37904586

RESUMEN

Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.


Asunto(s)
Bacteriófagos , Metilación de ADN , Microbioma Gastrointestinal , Humanos , Bacteriófagos/fisiología , Bacterias/virología , Archaea/virología , Enzimas de Restricción-Modificación del ADN
13.
J Biol Chem ; 299(1): 102781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496074

RESUMEN

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Asunto(s)
Empalme Alternativo , Retículo Endoplásmico , Proteínas de la Membrana , Cationes/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación de la Expresión Génica/genética
14.
BMC Genomics ; 25(1): 331, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565992

RESUMEN

BACKGROUND: The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS: Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS: Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.


Asunto(s)
Introgresión Genética , Estudio de Asociación del Genoma Completo , Humanos , Animales , Porcinos/genética , Genoma , Genómica/métodos , Cruzamiento , Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Selección Genética
15.
Breast Cancer Res ; 26(1): 27, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347651

RESUMEN

BACKGROUND: A malignancy might be found at surgery in cases of atypical ductal hyperplasia (ADH) diagnosed via US-guided core needle biopsy (CNB). The objective of this study was to investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) in predicting ADH diagnosed by US-guided CNB that was upgraded to malignancy after surgery. METHODS: In this retrospective study, 110 CNB-diagnosed ADH lesions in 109 consecutive women who underwent US, CEUS, and surgery between June 2018 and June 2023 were included. CEUS was incorporated into US BI-RADS and yielded a CEUS-adjusted BI-RADS. The diagnostic performance of US BI-RADS and CEUS-adjusted BI-RADS for ADH were analyzed and compared. RESULTS: The mean age of the 109 women was 49.7 years ± 11.6 (SD). The upgrade rate of ADH at CNB was 48.2% (53 of 110). The sensitivity, specificity, positive predictive value, and negative predictive value of CEUS for identification of malignant upgrading were 96.2%, 66.7%,72.9%, and 95.0%, respectively, based on BI-RADS category 4B threshold. The two false-negative cases were low-grade ductal carcinoma in situ. Compared with the US, CEUS-adjusted BI-RADS had better specificity for lesions smaller than 2 cm (76.7% vs. 96.7%, P = 0.031). After CEUS, 16 (10 malignant and 6 nonmalignant) of the 45 original US BI-RADS category 4A lesions were up-classified to BI-RADS 4B, and 3 (1 malignant and 2 nonmalignant) of the 41 original US BI-RADS category 4B lesions were down-classified to BI-RADS 4A. CONCLUSIONS: CEUS is helpful in predicting malignant upgrading of ADH, especially for lesions smaller than 2 cm and those classified as BI-RADS 4A and 4B on ultrasound.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Femenino , Humanos , Persona de Mediana Edad , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Ultrasonografía Mamaria , Estudios Retrospectivos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Biopsia con Aguja Gruesa
16.
Curr Issues Mol Biol ; 46(4): 2856-2870, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666909

RESUMEN

Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and replicative senescent (Passage 12, P12) hDPCs. The results confirm that hDPCs undergo replicative senescence with passaging, during which their ability to proliferate and osteogenic differentiation decreases. Notably, during replicative senescence, phosphoglycerate dehydrogenase (PHGDH), the key enzyme of the serine synthesis pathway (SSP), is significantly downregulated, as well as S-adenosylmethionine (SAM) levels, resulting in reduced H3K36me3 modification on Sirtuin 1 (SIRT1)and Runt-related transcription factor 2 (RUNX2) promoters. Inhibition of PHGDH leads to the same phenotype as replicative senescence. Serine supplementation fails to rescue the senescence phenotype caused by replicative senescence and inhibitors, in which folate metabolism-related genes, including serine hydroxymethyl transferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 1(MTHFD1), methylenetetrahydrofolate dehydrogenase 2(MTHFD2), are notably decreased. Our research raised a possibility that PHGDH may be involved in cellular senescence by affecting folate metabolism and histone methylation in addition to serine biosynthesis, providing potential targets to prevent senescence.

17.
Hum Mol Genet ; 31(14): 2396-2405, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35179198

RESUMEN

Cognitive impairment is a common non-motor complication of Parkinson's disease (PD). Glucocerebrosidase gene (GBA1) variants are found in 10-15% of PD cases and are numerically the most important risk factor for PD and dementia with Lewy bodies. Accumulation of α-synuclein and tau pathology is thought to underlie cognitive impairment in PD and likely involves cholinergic as well as dopaminergic neurons. Neural crest stem cells were isolated from both PD patients with the common heterozygous N370S GBA1 mutation and normal subjects without GBA1 mutations. The stem cells were used to generate a cholinergic neuronal cell model. The effects of the GBA1 variant on glucocerebrosidase (GCase) protein and activity, and cathepsin D, tau and α-synuclein protein levels in cholinergic neurons were examined. Ambroxol, a GCase chaperone, was used to investigate whether GCase enhancement was able to reverse the effects of the GBA1 variant on cholinergic neurons. Significant reductions in GCase protein and activity, as well as in cathepsin D levels, were found in GBA1 mutant (N370S/WT) cholinergic neurons. Both tau and α-synuclein levels were significantly increased in GBA1 mutant (N370S/WT) cholinergic neurons. Ambroxol significantly enhanced GCase activity and decreased both tau and α-synuclein levels in cholinergic neurons. GBA1 mutations interfere with the metabolism of α-synuclein and tau proteins and induce higher levels of α-synuclein and tau proteins in cholinergic neurons. The GCase pathway provides a potential therapeutic target for neurodegenerative disorders related to pathological α-synuclein or tau accumulation.


Asunto(s)
Ambroxol , Glucosilceramidasa , Enfermedad de Parkinson , Ambroxol/farmacología , Catepsina D/genética , Células Cultivadas , Colinérgicos/farmacología , Glucosilceramidasa/genética , Humanos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Biochem Cell Biol ; 102(2): 179-193, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086039

RESUMEN

Mitochondria play a critical role in nerve regeneration, yet the impact of gene expression changes related to mitochondria in facial nerve regeneration remains unknown. To address this knowledge gap, we analyzed the expression profile of the facial motor nucleus (FMN) using data obtained from the Gene Expression Omnibus (GEO) database (GSE162977). By comparing different time points in the data, we identified differentially expressed genes (DEGs). Additionally, we collected mitochondria-related genes from the Gene Ontology (GO) database and intersected them with the DEGs, resulting in the identification of mitochondria-related DEGs (MIT-DEGs). To gain further insights, we performed functional enrichment and pathway analysis of the MIT-DEGs. To explore the interactions among these MIT-DEGs, we constructed a protein-protein interaction (PPI) network using the STRING database and identified hub genes using the Degree algorithm of Cytoscape software. To validate the relevance of these genes to nerve regeneration, we established a rat facial nerve injury (FNI) model and conducted a series of experiments. Through these experiments, we confirmed three MIT-DEGs (Myc, Lyn, and Cdk1) associated with facial nerve regeneration. Our findings provide valuable insights into the transcriptional changes of mitochondria-related genes in the FMN following FNI, which can contribute to the development of new treatment strategies for FNI.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Animales , Ratas , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas/genética , Programas Informáticos , Biología Computacional/métodos , Ontología de Genes
19.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898476

RESUMEN

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Asunto(s)
Asma , Autofagia , Células Epiteliales , Transición Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patología , Asma/genética , Células Epiteliales/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Bronquios/metabolismo , Bronquios/patología , Masculino , Línea Celular , Femenino , Persona de Mediana Edad , Transducción de Señal , Adulto
20.
Anal Chem ; 96(14): 5640-5647, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551637

RESUMEN

Detection and discrimination of fluoroquinolones (FQs) are crucial for food safety but remain a formidable challenge due to their minor differences in molecular structures and the serious interferences from food matrices. Herein, we propose an afterglow assay for the detection and discrimination of FQs through modulating their room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) properties by a host-guest doping strategy. FQs were doped into the boric acid host, forming boronic anhydride structures and hydrogen bonds, which prompted the RTP and TADF performance of FQs by stabilizing their excited states, preventing triplet exciton quenching, and reducing the energy gap between singlet and triplet states. The FQs can be quantitatively detected through monitoring the afterglow intensity of host-guest systems, as low as 0.25 µg/mL. The differences in the afterglow intensity and emission lifetime allowed accurate discrimination of 11 types of FQs through pattern recognition methods. Aided by the delayed signal detection model of afterglow emission, the background signal and the interferences from food matrices were effectively eliminated, which endow the detection and discrimination of mixed FQs in commercial meat samples, without multiple-step separation processes.


Asunto(s)
Anhídridos , Fluoroquinolonas , Bioensayo , Boro , Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA