Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330848

RESUMEN

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Apoptosis , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Piridinas/farmacología
2.
Drug Dev Res ; 84(2): 296-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36644989

RESUMEN

Small molecule covalent drugs have proved to be desirable therapies especially on drug resistance related to point mutations. Secondary mutations of FLT3 have become the main mechanism of FLT3 inhibitors resistance which further causes the failure of treatment. Herein, a series of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine covalent derivatives were synthesized and optimized to overcome the common secondary resistance mutations of FLT3. Among these derivatives, compound F15 displayed potent inhibition activities against FLT3 (IC50 = 123 nM) and FLT3-internal tandem duplication (ITD) by 80% and 26.06%, respectively, at the concentration of 1 µM. Besides, F15 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 253 nM) and MV4-11 (IC50 = 91 nM), as well as BaF3 cells with variety of secondary mutations. Furthermore, cellular mechanism assays indicated that F15 inhibited phosphorylation of FLT3 and its downstream signaling factors. Notably, F15 could be considered for further development as potential drug candidate to treat AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Aminas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Apoptosis , Proliferación Celular
3.
Bioorg Med Chem ; 70: 116937, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35863236

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) mutation has been strongly associated with increased risk of relapse, and the irreversible covalent FLT3 inhibitors had the potential to overcome the drug-resistance. In this study, a series of simplified 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine derivatives containing two types of Michael acceptors (vinyl sulfonamide, acrylamide) were conveniently synthesized to target FLT3 and its internal tandem duplications (ITD) mutants irreversibly. The kinase inhibitory activities showed that compound C14 displayed potent inhibition activities against FLT3 (IC50 = 256 nM) and FLT3-ITD by 73 % and 25.34 % respectively, at the concentration of 1 µM. The antitumor activities indicated that C14 had strong inhibitory activity against the human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 507 nM) harboring FLT3-ITD mutant, as well as MV4-11 (IC50 = 325 nM) bearing FLT3-ITD mutation. The biochemical analyses showed that these effects were related to the ability of C14 to inhibit FLT3 signal pathways, and C14 could induce apoptosis in MV4-11 cell as demonstrated by flow cytometry. Fortunately, C14 showed very weak potency against FLT3-independent human cervical cancer cell line HL-60 (IC50 > 10 µM), indicating that it might have no off-target toxic effects. In light of these data, compound C14 represents a novel covalent FLT3 kinase inhibitor for targeted therapy of AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Aminas/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Mutación , Inhibidores de Proteínas Quinasas/química , Tirosina Quinasa 3 Similar a fms
4.
Apoptosis ; 26(11-12): 639-656, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34743246

RESUMEN

Resistance to epidermal growth factor receptor-tyrosin kinase inhibitors (TKIs, e.g. icotinib) remains a major clinical challenge. Non-small cell lung cancer patients with wild-type EGFR and/or K-RAS mutation are primary resistance to EGFR-TKIs. Berberine has been found to have potent anticancer activities via distinct molecular mechanism. In this study, we sought to investigate the therapeutic utility of BBR in combination with icotinib to overcome icotinib resistance in NSCLC cells, and explore the molecular mechanism of synergism of icotinib and BBR to EGFR-resistant NSCLC cells. We used the two EGFR-resistant NSCLC cell lines H460 and H1299 for testing the inhibitory effect of icotinib and/or BBR on them. Moreover, xenograft mouse model was applied for assessing the anti-tumor activities of BBR and icotinib in combination. Results showed that BBR and icotinib have a synergistic inhibitory effect on H460 and H1299 cells through induction of autophagic cell death and apoptosis. Accordingly, the anti-cancer effect of BBR plus icotinib was further confirmed in the NSCLC xenograft mouse models. Combination of BBR and icotinib significantly inhibited the protein expression and the activity of EGFR by inducing autophagic EGFR degradation. BBR plus icotinib resulted in intracellular ROS accumulation, which could mediated autophagy and apoptosis and involved in the suppression of cell migration and invasion. In conclusions, combination application of BBR and icotinib could be an effective strategy to overcome icotinib resistance in the treatment of NSCLC.


Asunto(s)
Muerte Celular Autofágica , Berberina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Apoptosis , Berberina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Éteres Corona , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Quinazolinas , Transducción de Señal
5.
Bioorg Med Chem Lett ; 29(24): 126772, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31711785

RESUMEN

Inhibition of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) to prevent brain ß-amyloid (Aß) peptide's formation is a potential effective approach to treat Alzheimer's disease. In this report we described a structure-based optimization of a series of BACE1 inhibitors derived from an iminopyrimidinone scaffold W-41 (IC50 = 7.1 µM) by Wyeth, which had good selectivity and brain permeability but low activity. The results showed that occupying the S3 cavity of BACE1 enzyme could be an effective strategy to increase the biological activity, and five compounds exhibited stronger inhibitory activity and higher liposolubility than W-41, with L-5 was the most potent inhibitor against BACE1 (IC50 = 0.12 µM, logP = 2.49).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Humanos , Relación Estructura-Actividad
6.
Beilstein J Org Chem ; 15: 291-298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800179

RESUMEN

Herein we report a novel palladium-catalyzed reaction that results in phenanthrene derivatives using aryl iodides, ortho-bromobenzoyl chlorides and norbornadiene in one pot. This dramatic transformation undergoes ortho-C-H activation, decarbonylation and subsequent a retro-Diels-Alder process. Pleasantly, this protocol has a wider substrate range, shorter reaction times and higher yields of products than previously reported methods.

7.
Bioorg Med Chem ; 26(16): 4735-4744, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30121211

RESUMEN

Inspired by that the multi-target inhibitors against receptor tyrosine kinases (RTKs) have significantly improved the effect of clinical treatment for cancer, and based on the chemical structure of Linifanib (ABT-869, Abbott), two series of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure were designed and synthesized as multi-target inhibitors against RTKs. The preliminary biological evaluation showed that several compounds exhibited comparable potency with Linifanib. Compound S21 was identified as the most potent inhibitor against Fms-like tyrosine kinase 3 (FLT-3), kinase insert domain containing receptor (KDR) and platelet-derived growth factor receptor ß (PDGFR-ß) with its IC50 values were 4 nM, 3 nM and 8 nM respectively, it also showed potent inhibitory activities against several cancer cells.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Piridinas/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Urea/química , Sitios de Unión , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Relación Estructura-Actividad , Urea/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
8.
J Asian Nat Prod Res ; 20(12): 1167-1181, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28971689

RESUMEN

Scutellarin (1) possesses protective effects against neuronal injury, while 6-O-methyl-scutellarein (3), as the main metabolite of scutellarin in vivo, has not been reported about its protective effects previously. The present study mainly investigated whether the neural injury caused by ischemia/reperfusion would be influenced by different doses of 6-O-methyl-scutellarein (3). The results of behavioral, neurological, and histological examinations indicated that 6-O-methyl-scutellarein (3) could improve neuronal injury, and exhibit significant difference among the various doses. More importantly, 6-O-methyl-scutellarein (3) had better protective effects than scutellarin in rat cerebral ischemia.


Asunto(s)
Isquemia Encefálica/patología , Flavonas/farmacología , Daño por Reperfusión/prevención & control , Animales , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Flavonas/administración & dosificación , Masculino , Aprendizaje por Laberinto , Estructura Molecular , Distribución Aleatoria , Ratas , Daño por Reperfusión/patología
9.
J Enzyme Inhib Med Chem ; 32(1): 572-587, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28133981

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Tacrina/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico , Humanos , Tacrina/análogos & derivados , Proteínas tau/antagonistas & inhibidores
10.
Molecules ; 22(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635646

RESUMEN

Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group was introduced at position C-8 of scutellarein (2) to enhance the aqueous solubility of the obtained derivative (3). DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging ability and antithrombic activity were also conducted to determine its bioactivity. The result showed that scutellarein derivate (3) could be a better agent for ischemic cerebrovascular disease treatment.


Asunto(s)
Cromanos/síntesis química , Fibrinolíticos/síntesis química , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Apigenina/síntesis química , Apigenina/química , Apigenina/farmacología , Compuestos de Bifenilo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Trastornos Cerebrovasculares/tratamiento farmacológico , Cromanos/química , Cromanos/farmacología , Cromanos/uso terapéutico , Erigeron/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Glucuronatos/química , Glucuronatos/farmacología , Humanos , Masculino , Picratos/metabolismo , Conejos , Solubilidad
11.
Molecules ; 21(3): 263, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26927039

RESUMEN

Scutellarein (2), which is an important in vivo metabolite of scutellarin (1), was synthesized from 3,4,5-trimethoxyphenol (3) in high yield in four steps. This strategy relies on acetylation, aldolization, cyclization and hydrolysis reactions, respectively.


Asunto(s)
Apigenina/síntesis química , Fármacos Cardiovasculares/síntesis química , Glucuronatos/síntesis química , Fármacos Neuroprotectores/síntesis química , Acetilación , Animales , Técnicas de Química Sintética , Ciclización , Humanos , Hidrólisis , Fenoles/química
12.
Pharm Biol ; 54(10): 2158-67, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26955854

RESUMEN

Context Scutellarin (1) has been widely used in China to treat acute cerebral infarction and paralysis induced by cerebrovascular diseases. However, scutellarin (1) has unstable metabolic characteristics. Objective The metabolic profile of 6-O-scutellarein was studied to determine its metabolic stability in vivo. Materials and methods In this study, a method of UFLC/Q-TOF MS was used to study the 6-O-methyl-scutellarein metabolites in rat plasma, urine, bile and faeces after oral administration of 6-O-methyl-scutellarein (3). One hour after oral administration of 6-O-methyl-scutellarein (3) (34 mg/kg), approximately 1 mL blood samples were collected in EP tubes from all groups. Bile, urine and faeces samples were collected from eight SD rats during 0-24 h after oral administration. The mass defect filtering, dynamic background subtraction and information dependent acquisition techniques were also used to identify the 6-O-methyl-scutellarein metabolites. Results The parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces. The glucuronide conjugate of 6-O-methyl-scutellarein (M1, M2), diglucuronide conjugate of 6-O-methyl-scutellarein (M3), sulphate conjugate of 6-O-methyl-scutellarein (M4), glucuronide and sulphate conjugate of 6-O-methyl-scutellarein (M5), methylated conjugate of 6-O-methyl-scutellarein (M6) were detected in rat urine. M1, M2 and M3 were detected in rat bile. M1 was found in rat plasma and M7 was detected in faeces. Discussion and conclusion Because the parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces, we speculate that 6-O-methyl-scutellarein (3) had good metabolic stability in vivo. This warrants further study to develop it as a promising candidate for the treatment of ischemic cerebrovascular disease.


Asunto(s)
Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/metabolismo , Flavonas/metabolismo , Espectrometría de Masas en Tándem , Administración Oral , Animales , Bilis/metabolismo , Estabilidad de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Heces/química , Flavonas/administración & dosificación , Flavonas/sangre , Flavonas/orina , Glucurónidos/metabolismo , Masculino , Fase II de la Desintoxicación Metabólica , Ratas Sprague-Dawley , Sulfatos/metabolismo
13.
Bioorg Med Chem ; 23(21): 6875-84, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26455656

RESUMEN

In order to improve the biological activity and water solubility of scutellarin (1), some derivatives of its main metabolite (scutellarein) were designed and synthesized. All the compounds were tested for their thrombin inhibition activity through the analyzation of thrombin time (TT), activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrinogen (FIB). Their antioxidant activities were assessed by measuring their scavenging capacities toward 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and the ability to protect PC12 cells against H2O2-induced cytotoxicity, their water solubility were also assessed by ultraviolet (UV) spectrophotometer. The results showed that compound 8b demonstrated stronger anticoagulant and antioxidant activity, better water solubility compared with scutellarein (2), which warrants it as a promising agent for the treatment of ischemic cerebrovascular disease.


Asunto(s)
Antioxidantes/síntesis química , Apigenina/química , Animales , Anticoagulantes/síntesis química , Anticoagulantes/química , Anticoagulantes/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Apigenina/síntesis química , Apigenina/farmacología , Fibrinógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Tiempo de Protrombina , Ratas , Solubilidad , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Tiempo de Trombina
14.
Int J Mol Sci ; 16(4): 7587-94, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25854429

RESUMEN

Scutellarin (1) has been used for the treatment of angina pectoris, cerebral infarction and coronary heart disease with a large market share in China. Pharmacokinetic studies on scutellarin showed that scutellarin (1) is readily converted into its metabolites in vivo. In this paper, a new and practical synthetic method for the synthesis of 6-O-methyl-scutellarein (3) (one metabolite of scutellarin in vivo) is reported. The benzyl bromide was firstly used to selectively replace the acetyl group at C-7 in 7, and was then used to protect the hydroxy groups at C-4' in 10, 6-O-methyl-scutellarein (3) is obtained in high yield through these methods.


Asunto(s)
Apigenina/química , Flavonas/síntesis química , Flavonoides/síntesis química , Apigenina/metabolismo , Estructura Molecular
15.
Molecules ; 20(6): 10184-91, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26042857

RESUMEN

In this paper, a new and efficient synthesis of 6-O-methylscutellarein (3), the major metabolite of the natural medicine scutellarin, is reported. Two hydroxyl groups at C-4' and C-7 in 2 were selectively protected by chloromethyl methyl ether after the reaction conditions were optimized, then 6-O-methyl-scutellarein (3) was produced in high yield after methylation of the hydroxyl group at C-6 and subsequent deprotection of the two methyl ether groups.


Asunto(s)
Apigenina/química , Flavonas/síntesis química , Glucuronatos/química , Biotransformación , Humanos , Éteres Metílicos/química , Metilación , Soluciones
16.
Bioorg Med Chem Lett ; 24(18): 4424-4427, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25139569

RESUMEN

O-Alkylated quercetin analogs were synthesized and their anticancer activities were assessed by a high-throughout screening (HTS) method. The structure-activity relationships (SAR) showed that introduction of long alkyl chain such as propyl group at the C-3 OH position or short alkyl chain such as ethyl group at the C-4' OH position were very important for keeping inhibitory activities against the 16 cancer cell lines. Furthermore, when the two n-butyl groups were introduced into the C-3, C-7 or C-4', C-7 positions, the anticancer activity was enhanced.


Asunto(s)
Antineoplásicos/farmacología , Quercetina/farmacología , Alquilación , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Estructura Molecular , Quercetina/síntesis química , Quercetina/química , Relación Estructura-Actividad
17.
Drug Dev Res ; 75(7): 455-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24976071

RESUMEN

Using a high-throughout screening approach, the anticancer activities of 16 O-methylated (OMe) analogs of quercetin were assessed. The structure-activity relationships showed that OMe moieties at the 4' and/or 7 positions were important for maintaining inhibitory activities against the 16 cancer cell lines. Furthermore, when the OH groups at the 3' and 4' positions were both replaced by OMe moieties, anticancer activity was enhanced.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/patología , Quercetina/análogos & derivados , Quercetina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Metilación , Estructura Molecular , Quercetina/química , Relación Estructura-Actividad
18.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38648728

RESUMEN

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Mieloma Múltiple , Bibliotecas de Moléculas Pequeñas , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/uso terapéutico , Estructura Molecular
19.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38484122

RESUMEN

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-ret/genética , Medicina de Precisión , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Neoplasias Pulmonares/tratamiento farmacológico
20.
Plant Physiol ; 158(1): 264-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22100644

RESUMEN

Primexine deposition and plasma membrane undulation are the initial steps of pollen wall formation. However, little is known about the genes involved in this important biological process. Here, we report a novel gene, NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU), which functions in the early stage of pollen wall development in Arabidopsis (Arabidopsis thaliana). Loss of NPU function causes male sterility due to a defect in callose synthesis and sporopollenin deposition, resulting in disrupted pollen in npu mutants. Transmission electronic microscopy observation demonstrated that primexine deposition and plasma membrane undulation are completely absent in the npu mutants. NPU encodes a membrane protein with two transmembrane domains and one intracellular domain. In situ hybridization analysis revealed that NPU is strongly expressed in microspores and the tapetum during the tetrad stage. All these results together indicate that NPU plays a vital role in primexine deposition and plasma membrane undulation during early pollen wall development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Gametogénesis en la Planta/genética , Proteínas de la Membrana/metabolismo , Proteínas de Arabidopsis/genética , Biopolímeros , Carotenoides , Membrana Celular/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Glucanos/biosíntesis , Meiosis , Proteínas de la Membrana/genética , Mutación , Infertilidad Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA