Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(6): 561-570, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777213

RESUMEN

Polarization of macrophages into pro-inflammatory or anti-inflammatory states has distinct metabolic requirements, with mechanistic target of rapamycin (mTOR) kinase signaling playing a critical role. However, it remains unclear how mTOR regulates metabolic status to promote polarization of these cells. Here we show that an mTOR-Semaphorin 6D (Sema6D)-Peroxisome proliferator receptor γ (PPARγ) axis plays critical roles in macrophage polarization. Inhibition of mTOR or loss of Sema6D blocked anti-inflammatory macrophage polarization, concomitant with severe impairments in PPARγ expression, uptake of fatty acids, and lipid metabolic reprogramming. Macrophage expression of the receptor Plexin-A4 is responsible for Sema6D-mediated anti-inflammatory polarization. We found that a tyrosine kinase, c-Abl, which associates with the cytoplasmic region of Sema6D, is required for PPARγ expression. Furthermore, Sema6D is important for generation of intestinal resident CX3CR1hi macrophages and prevents development of colitis. Collectively, these findings highlight crucial roles for Sema6D reverse signaling in macrophage polarization, coupling immunity, and metabolism via PPARγ.


Asunto(s)
Inflamación/metabolismo , Metabolismo de los Lípidos/inmunología , Macrófagos/metabolismo , PPAR gamma/metabolismo , Semaforinas/metabolismo , Animales , Diferenciación Celular/inmunología , Colitis/inmunología , Inflamación/inmunología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , PPAR gamma/inmunología , Semaforinas/inmunología , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/inmunología , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell ; 153(7): 1602-11, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23768684

RESUMEN

The fluorescent protein toolbox has revolutionized experimental biology. Despite this advance, no fluorescent proteins have been identified from vertebrates, nor has chromogenic ligand-inducible activation or clinical utility been demonstrated. Here, we report the cloning and characterization of UnaG, a fluorescent protein from Japanese eel. UnaG belongs to the fatty-acid-binding protein (FABP) family, and expression in eel is restricted to small-diameter muscle fibers. On heterologous expression in cell lines or mouse brain, UnaG produces oxygen-independent green fluorescence. Remarkably, UnaG fluorescence is triggered by an endogenous ligand, bilirubin, a membrane-permeable heme metabolite and clinical health biomarker. The holoUnaG structure at 1.2 Å revealed a biplanar coordination of bilirubin by reversible π-conjugation, and we used this high-affinity and high-specificity interaction to establish a fluorescence-based human bilirubin assay with promising clinical utility. UnaG will be the prototype for a versatile class of ligand-activated fluorescent proteins, with applications in research, medicine, and bioengineering.


Asunto(s)
Anguilas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/aislamiento & purificación , Proteínas Fluorescentes Verdes/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Bilirrubina/metabolismo , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Músculos/metabolismo , Alineación de Secuencia
3.
Nature ; 588(7837): 296-302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177716

RESUMEN

Perisynaptic astrocytic processes are an integral part of central nervous system synapses1,2; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Proteómica , Sinapsis/química , Sinapsis/metabolismo , Animales , Astrocitos/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Forma de la Célula , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Prueba de Complementación Genética , Células HEK293 , Humanos , Masculino , Ratones , Inhibición Neural , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo
4.
J Biol Chem ; 300(2): 105629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199563

RESUMEN

In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.


Asunto(s)
Factor de Unión a CCAAT , Corteza Cerebral , Animales , Ratones , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Neurogénesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo
5.
Transgenic Res ; 33(3): 99-117, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684589

RESUMEN

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.


Asunto(s)
Cerebelo , Ratones Noqueados , Proteína Básica de Mielina , Neuronas , Animales , Neuronas/metabolismo , Ratones , Cerebelo/metabolismo , Cerebelo/crecimiento & desarrollo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903237

RESUMEN

Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Callithrix/genética , Transcriptoma/genética , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Callithrix/crecimiento & desarrollo , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Hibridación in Situ , Ratones , Especificidad de la Especie , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo
7.
J Biol Chem ; 295(29): 9768-9785, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32499373

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the Huntingtin gene. Results from previous studies have suggested that transcriptional dysregulation is one of the key mechanisms underlying striatal medium spiny neuron (MSN) degeneration in HD. However, some of the critical genes involved in HD etiology or pathology could be masked in a common expression profiling assay because of contamination with non-MSN cells. To gain insight into the MSN-specific gene expression changes in presymptomatic R6/2 mice, a common HD mouse model, here we used a transgenic fluorescent protein marker of MSNs for purification via FACS before profiling gene expression with gene microarrays and compared the results of this "FACS-array" with those obtained with homogenized striatal samples (STR-array). We identified hundreds of differentially expressed genes (DEGs) and enhanced detection of MSN-specific DEGs by comparing the results of the FACS-array with those of the STR-array. The gene sets obtained included genes ubiquitously expressed in both MSNs and non-MSN cells of the brain and associated with transcriptional regulation and DNA damage responses. We proposed that the comparative gene expression approach using the FACS-array may be useful for uncovering the gene cascades affected in MSNs during HD pathogenesis.


Asunto(s)
Cuerpo Estriado/metabolismo , Citometría de Flujo , Enfermedad de Huntington/metabolismo , Transcriptoma , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos
8.
Dev Growth Differ ; 61(4): 276-282, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30968390

RESUMEN

Skin development is tightly temporally coordinated with its sensory innervation, which consists of the peripheral branches of the dorsal root ganglion (DRG) axons. Various studies suggest that the skin produces a long-range attractant for the sensory axons. However, the exact identity of the guidance cue(s) remains unclear. To reveal the detailed molecular mechanism that controls DRG axon guidance and targeting, manipulation of specific skin layers at specific time points are required. To test a variety of attractants that can be expressed in specific skin layers at specific timepoints, we combined in utero electroporation with the Tol2 transposon system to induce long-term transgene expression in the developing mouse skin, including in the highly proliferative epidermal stem cells (basal layer) and their descendants (spinous and granular layer cells). The plasmid solution was injected as close to the hindpaw plantar surface as possible. Immediately, electric pulses were passed through the embryo to transduce the plasmid DNA into hindpaw skin cells. Balancing outcome measurements including: embryo survival, transfection efficiency, and the efficiency of transgene integration into host cells, we found that IUE was best performed on E13.5, and using an electroporation voltage of 34V. After immunostaining embryonic and early postnatal skin tissue sections for keratinocyte and sensory axon markers, we observe the growth of axons into skin epidermal layers including areas expressing EGFP. Therefore, this method is useful for studying the interaction between axon growth and epidermal cell division/differentiation.


Asunto(s)
Epidermis/inervación , Epidermis/metabolismo , Neuronas/metabolismo , Piel/inervación , Piel/metabolismo , Transgenes/genética , Animales , Axones/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Embarazo , Piel/embriología , Piel/crecimiento & desarrollo
9.
Development ; 142(6): 1113-24, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25725064

RESUMEN

Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development.


Asunto(s)
Separación Celular/métodos , Regulación de la Expresión Génica/fisiología , Hipotálamo/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Clonación Molecular , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Hipotálamo/metabolismo , Inmunohistoquímica , Ratones , Análisis por Micromatrices , Orexinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
10.
Hum Mol Genet ; 24(15): 4429-42, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25972374

RESUMEN

Selective autophagy adaptor proteins, including p62/SQSTM1, play pivotal roles in the targeted degradation of ubiquitinated proteins or organelles through the autophagy-lysosome system. However, how autophagy adaptors promote the autophagosomal engulfment of selected substrates is poorly understood. Here, we show that p62 phosphorylation at S403 is required for the efficient autophagosomal engulfment of polyubiquitinated mitochondria during Parkin-dependent mitophagy. p62 is able to interact with Parkin-recruited mitochondria without S403 phosphorylation under mitophagy-inducing conditions, but those mitochondria are not enclosed by autophagosomes. Intriguingly, the S403 phosphorylation occurs only in the early period of mitochondrial depolarization. Optineurin and TANK-binding kinase 1 (TBK1) are transiently recruited to the polyubiquitinated mitochondria, and the activated TBK1 phosphorylates p62 at S403. TBK1 inhibitor, BX795, prevents the p62-mediated autophagosomal engulfment of Parkin-recruited mitochondria. Our results suggest that TBK1-mediated S403 phosphorylation regulates the efficient autophagosomal engulfment of ubiquitinated mitochondria as an immediate response to the mitochondrial depolarization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Mitocondrias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/genética , Fosforilación , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Sequestosoma-1 , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Hum Mol Genet ; 24(4): 1092-105, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305080

RESUMEN

Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here, we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer life spans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyQ length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Huntington/genética , Cuerpos de Inclusión Intranucleares/genética , Fenotipo , Animales , Autofagia , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/mortalidad , Enfermedad de Huntington/patología , Espacio Intracelular/metabolismo , Longevidad/genética , Ratones , Ratones Noqueados , Péptidos/genética , Proteolisis
12.
Nucleic Acids Res ; 43(19): e126, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26101260

RESUMEN

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks. Upon in vivo electroporation, exciton-controlled sequence-specific oligonucleotide probes revealed focally concentrated endogenous 28S rRNA and U3 snoRNA at nucleoli and poly(A) RNA at nuclear speckles. Time-lapse imaging reveals steady-state stability of these RNA foci and dynamic dissipation of 28S rRNA concentrations upon polymerase I inhibition in native brain tissue. Confirming the validity of this technique in a physiological context, the in vivo RNA labeling did not interfere with the function of target RNA nor cause noticeable cytotoxicity or perturbation of cellular behavior.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , ARN/análisis , Animales , Movimiento Celular , Núcleo Celular/genética , Cerebelo/química , Cerebelo/citología , Embrión de Pollo , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos ICR , Sondas de Oligonucleótidos/síntesis química , Sondas de Oligonucleótidos/química , Imagen Óptica , ARN/metabolismo , ARN Ribosómico 28S/análisis , ARN Nucleolar Pequeño/análisis , Imagen de Lapso de Tiempo
13.
J Neurosci ; 33(50): 19620-34, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24336726

RESUMEN

Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFß antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.


Asunto(s)
Linaje de la Célula/fisiología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Vías Olfatorias/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular/fisiología , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Vías Olfatorias/metabolismo , Órgano Vomeronasal/metabolismo
14.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562839

RESUMEN

The mammalian cortex is a highly evolved brain region, but we still lack a comprehensive understanding of the molecular mechanisms underlying primate-specific neural circuits formation. In this study, we employed spatial transcriptomics to assess gene expression dynamics in the marmoset cortex during development, focusing on key regions and time points. Spatial transcriptomics identified genes that are sexually, spatially, and temporally differentially expressed in the developing marmoset cortex. Our detailed analysis of the visual cortex unveiled dynamic changes in gene expression across layers with distinct projections and functions. Notably, we discovered numerous axon guidance molecules with spatiotemporal expression patterns unique to the developing marmoset prefrontal cortex (PFC), which control PFC neuronal circuits. Among these molecules, PRSS12 (Protease, Serine, 12 (neurotrypsin, motopsin), when ectopically expressed in the mouse prelimbic cortex, caused similar changes in connectivity as observed in the marmoset A32 area. Furthermore, PRSS12 showed similar expression patterns in both marmoset and human PFC during development, suggesting parallels between marmoset and human brain development. The differential expression of axon guidance molecules in the developing PFC, varying by region, likely contributes to the formation of unique circuits observed in primates.

15.
Nat Commun ; 15(1): 2496, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548776

RESUMEN

Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.


Asunto(s)
Fenómenos Biológicos , Callithrix , Animales , Ratones , Masculino , Proteoma/metabolismo , Proteómica , Sinapsis/metabolismo
16.
J Neurosci ; 32(15): 5039-53, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496550

RESUMEN

Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/anatomía & histología , Expresión Génica/fisiología , Genómica/métodos , Animales , Química Encefálica/genética , Callithrix , Corteza Cerebral/metabolismo , Femenino , Marcadores Genéticos , Cuerpos Geniculados/metabolismo , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Corteza Prefrontal/metabolismo , Pulvinar/metabolismo , Especificidad de la Especie , Núcleos Talámicos/anatomía & histología , Núcleos Talámicos/metabolismo , Corteza Visual/metabolismo
17.
Dev Biol ; 365(1): 277-89, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22421355

RESUMEN

Cajal-Retzius (CR) cells play a crucial role in the formation of the cerebral cortex, yet the molecules that control their development are largely unknown. Here, we show that Ebf transcription factors are expressed in forebrain signalling centres-the septum, cortical hem and the pallial-subpallial boundary-known to generate CR cells. We identified Ebf2, through fate mapping studies, as a novel marker for cortical hem- and septum-derived CR cells. Loss of Ebf2 in vivo causes a transient decrease in CR cell numbers on the cortical surface due to a migratory defect in the cortical hem, and is accompanied by upregulation of Ebf3 in this and other forebrain territories that produce CR cells, without affecting proper cortical lamination. Accordingly, using in vitro preparations, we demonstrated that both Ebf2 and Ebf3, singly or together, control the migration of CR cells arising in the cortical hem. These findings provide evidence that Ebfs directly regulate CR cell development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Corteza Cerebral/embriología , Neuronas , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Movimiento Celular/fisiología , Corteza Cerebral/citología , Ratones , Neuronas/citología , Neuronas/fisiología
18.
Development ; 137(20): 3439-48, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20843859

RESUMEN

Gain- and loss-of-function experiments have demonstrated that a source of fibroblast growth factor (FGF) 8 regulates anterior to posterior (A/P) patterning in the neocortical area map. Whether FGF8 controls patterning as a classic diffusible morphogen has not been directly tested. We report evidence that FGF8 diffuses through the mouse neocortical primordium from a discrete source in the anterior telencephalon, forms a protein gradient across the entire A/P extent of the primordium, and acts directly at a distance from its source to determine area identity. FGF8 immunofluorescence revealed FGF8 protein distributed in an A/P gradient. Fate-mapping experiments showed that outside the most anterior telencephalon, neocortical progenitor cells did not express Fgf8, nor were they derived from Fgf8-expressing cells, suggesting that graded distribution of FGF8 results from protein diffusion from the anterior source. Supporting this conclusion, a dominant-negative high-affinity FGF8 receptor captured endogenous FGF8 at a distance from the FGF8 source. New FGF8 sources introduced by electroporation showed haloes of FGF8 immunofluorescence indicative of FGF8 diffusion, and surrounding cells reacted to a new source of FGF8 by upregulating different FGF8-responsive genes in concentric domains around the source. Reducing endogenous FGF8 with the dominant-negative receptor in the central neocortical primordium induced cells to adopt a more posterior area identity, demonstrating long-range area patterning by FGF8. These observations support FGF8 as a classic diffusible morphogen in neocortex, thereby guiding future studies of neocortical pattern formation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neocórtex/embriología , Animales , Anticuerpos Monoclonales , Electroporación , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Confocal , Neocórtex/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
19.
Elife ; 122023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988289

RESUMEN

The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.


Asunto(s)
Células Ependimogliales , Células-Madre Neurales , Animales , Humanos , Hurones , Encéfalo , Mamíferos
20.
Nat Commun ; 14(1): 6077, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770450

RESUMEN

Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.


Asunto(s)
Neuronas , Vibrisas , Animales , Vibrisas/fisiología , Neuronas/metabolismo , Células Piramidales/fisiología , Neuritas , Corteza Somatosensorial/fisiología , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA