Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Funct Biomater ; 15(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39330250

RESUMEN

Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.

2.
J Funct Biomater ; 13(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36547554

RESUMEN

Fixation screws and other temporary magnesium alloy fixation devices are used in orthopedic practice because of their biodegradability, biocompatibility and acceptable biodegradation rates. The substitution of dissolving implant by tissues during the healing process is one of the main requirements for biodegradable implants. Previously, clinical tests showed the effectiveness of Ga ions on bone tissue regeneration. This work is the first systematic study on the corrosion rate and biocompatibility of Mg-Zn-Ga-(Y) alloys prepared by hot extrusion, where Ga is an additional major alloying element, efficient as a bone-resorption inhibitor. Most investigated alloys have a low corrosion rate in Hanks' solution close to ~0.2 mm/year. No cytotoxic effects of Mg-2Zn-2Ga (wt.%) alloy on MG63 cells were observed. Thus, considering the high corrosion resistance and good biocompatibility, the Mg-2Zn-2Ga alloy is possible for applications in osteosynthesis implants with improved bone tissue regeneration ability.

3.
Materials (Basel) ; 15(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143507

RESUMEN

Magnesium (Mg) alloys have received increasing interest in the past two decades as biomaterials due to their excellent biological compatibility. However, the corrosion resistance of Mg alloys is relativity low which limits their usage in degradable implant applications, and controlling the corrosion resistance is the key to solving this problem. This review discusses the relative corrosion mechanisms, including pitting, filiform, high temperature, stress corrosion, etc., of Mg alloys. Various approaches like purification (Fe, Ni, Cu, etc.), micro-alloying (adding Zn, Mn, Ca, RE elements, and so on), grain refinement (severe plastic deformation, SPD, etc.), and surface modifications (various coating methods) to control corrosion and biological performance are summarized. Moreover, the in vivo implantations of Mg alloy vascular stents and the issues that have emerged based on the reports in recent years are introduced. It is recommended that corrosion mechanisms should be further investigated as there is no method that can remove all the impurities and a new purification approach needs to be developed. The concentration of micro-alloy elements should be carefully controlled to avoid superfluous compounds. Developing new continuous SPD methods to achieve fine-grained Mg alloys with a large size scale is necessary. The development of a multifunctional coating could also be considered in controlling the Mg degradation rate. Moreover, the research trends and challenges in the future of Mg biomaterials are proposed.

4.
Materials (Basel) ; 15(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36234190

RESUMEN

Magnesium alloys are attractive candidates for use as temporary fixation devices in osteosynthesis because they have a density and Young's modulus similar to those of cortical bone. One of the main requirements for biodegradable implants is its substitution by tissues during the healing process. In this article, the Mg-Zn-Ga-(Y) alloys were investigated that potentially can increase the bone growth rate by release of Ga ions during the degradation process. Previously, the effectiveness of Ga ions on bone tissue regeneration has been proved by clinical tests. This work is the first systematic study on the microstructure and mechanical properties of Mg-Zn-Y alloys containing Ga as an additional major alloying element prepared by the hot-extrusion process. The microstructure and phase composition of the Mg-Zn-Ga-(Y) alloys in as-cast, heat-treated, and extruded conditions were analyzed. In addition, it was shown that the use of hot extrusion produces Mg-Zn-Ga-(Y) alloys with favorable mechanical properties. The tensile yield strength, ultimate tensile strength, and elongation at fracture of the MgZn4Ga4 alloy extruded at 150 °C were 256 MPa, 343 MPa, and 14.2%, respectively. Overall, MgZn4Ga4 alloy is a perspective for applications in implants for osteosynthesis with improved bone regeneration ability.

5.
J Mater Sci Mater Med ; 22(11): 2437-47, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21909643

RESUMEN

Hydroxyapatite (HA) was coated onto pure magnesium (Mg) with an MgF(2) interlayer in order to reduce the surface corrosion rate and enhance the biocompatibility. Both MgF(2) and HA were successfully coated in sequence with good adhesion properties using the fluoride conversion coating and aerosol deposition techniques, respectively. In a simulated body fluid (SBF), the double layer coating remarkably enhanced the corrosion resistance of the coated Mg specimen. The in vitro cellular responses of the MC3T3-E1 pre-osteoblasts were examined using a cell proliferation assay and an alkaline phosphatase (ALP) assay, and these results demonstrated that the double coating layer also enhanced cell proliferation and differentiation levels. In the in vivo study, the HA/MgF(2) coated Mg corroded less than the bare Mg and had a higher bone-to-implant contact (BIC) ratio in the cortical bone area of the rabbit femora 4 weeks after implantation. These in vitro and in vivo results suggested that the HA coated Mg with the MgF(2) interlayer could be used as a potential candidate for biodegradable implant materials.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Fluoruros/química , Compuestos de Magnesio/química , Células 3T3 , Implantes Absorbibles , Animales , Sustitutos de Huesos , Corrosión , Ensayo de Materiales , Ratones , Conejos , Propiedades de Superficie
6.
Materials (Basel) ; 11(2)2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29382054

RESUMEN

Twin roll casting (TRC), with a relatively fast solidification rate, is an excellent production method with promising potential for producing wrought semi or final Mg alloy products that can often suffer from poor formability. We investigate in this study the effect of the TRC method and the subsequent heat treatment on the microstructure and deformation mechanisms in Mg-Zn-Zr-Nd alloy deformed at room temperature using the in-situ neutron diffraction and acoustic emission techniques and ex-situ texture measurement and microscopy, respectively. Although a higher work hardening is observed in the rolling direction due to the more intensive -type dislocation activity, the difference in the mechanical properties of the specimens deformed in the RD and TD directions is small in the as-rolled condition. An additional heat treatment results in recrystallization and significant anisotropy in the deformation. Due to the easier activation of the extension twinning in the TD given by texture, the yield stress in the TD is approximately 40% lower than that in the RD.

7.
J Biomater Appl ; 27(4): 469-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21862515

RESUMEN

Oxide coating layers were formed on a pure magnesium (Mg) substrate through anodization and micro-arc oxidation (MAO) in order to enhance the biocompatibility and reduce the degradation rate. A thin, smooth MgO coating layer was formed after the anodization. On the other hand, when the Mg was treated using the MAO process, a relatively thick, rough MgO layer was formed. The corrosion properties were investigated using electrochemical and ion release tests in a simulated body fluid. Both the anodization and the MAO treatment enhanced the corrosion resistance of the Mg specimens. However, the MgO layers that formed on the surface were not stable enough to render favorable environments for cell growth. The anodized and MAO-treated specimens were post-treated in a cell-culturing medium in order to improve the stability of the coating layer. The biocompatibility was evaluated using in vitro cell tests, including cell attachment, DNA measurement, and alkaline phosphatase (ALP) activity tests. The DNA levels of the surface-treated Mg were about 6-10 times higher than the bare Mg. The ALP activity levels were also more than double after either the anodization or the MAO followed by the post-treatments. These results demonstrated that the biocompatibility and the corrosion resistance of Mg were significantly improved by the series of surface treatments.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Magnesio/química , Animales , Adhesión Celular , Línea Celular , Proliferación Celular , Materiales Biocompatibles Revestidos/metabolismo , Corrosión , Magnesio/metabolismo , Ensayo de Materiales , Ratones , Oxidación-Reducción , Prótesis e Implantes , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA