Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4956, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400643

RESUMEN

In recent years, considerable research and development efforts are devoted to improving the performance of polymer electrolyte fuel cells. However, the power density and catalytic activities of these energy conversion devices are still far from being satisfactory for large-scale operation. Here we report performance enhancement via incorporation, in the cathode catalyst layers, of a ring-structured backbone matrix into ionomers. Electrochemical characterizations of single cells and microelectrodes reveal that high power density is obtained using an ionomer with high oxygen solubility. The high solubility allows oxygen to permeate the ionomer/catalyst interface and react with protons and electrons on the catalyst surfaces. Furthermore, characterizations of single cells and single-crystal surfaces reveal that the oxygen reduction reaction activity is enhanced owing to the mitigation of catalyst poisoning by sulfonate anion groups. Molecular dynamics simulations indicate that both the high permeation and poisoning mitigation are due to the suppression of densely layered folding of polymer backbones near the catalyst surfaces by the incorporated ring-structured matrix. These experimental and theoretical observations demonstrate that ionomer's tailored molecular design promotes local oxygen transport and catalytic reactions.

2.
Chem Commun (Camb) ; (3): 392-4, 2008 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-18399218

RESUMEN

The phenoxo-based dinucleating ligand, 2,6-bis[bis(6-pivalamido-2-pyridylmethyl)amino-methyl-4-aminophenol (1), and its Fe2(II) complex, [Fe2(II)(1)(PhCOO)2](CF3SO3) (2), were prepared and 2 deposited on the Au surface (2/Au) is much more stable than in solution and exhibits redox behavior in aqueous media as well as reversible adsorption/desorption of oxygen at room temperature.

4.
Chem Commun (Camb) ; 46(29): 5259-61, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20563331

RESUMEN

We developed a novel anti-agglomeration method that enables preservation of the vertical alignment of carbon nanotubes (CNTs) during desiccation of wet CNTs by utilizing antisolvent precipitation and sublimation of naphthalene (Nap). Moreover, we succeeded in depositing Pt nanoparticles onto CNTs without collapse of the vertically aligned morphology by this method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA