Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Birth Defects Res B Dev Reprod Toxicol ; 98(2): 170-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23529913

RESUMEN

Interleukin-6 (IL-6) is involved in the pathogenesis of multiple disorders, including juvenile autoimmune diseases. IL-6 participates in a broad spectrum of physiological events, and the IL-6 receptor (IL-6R) is widely distributed across multiple organs. The interrelationship of development phases in juveniles together with organs involved in IL-6 signaling called for evaluations of anti-IL-6R antibody induced effects in a juvenile mouse model to assess the safety of such an approach in human juvenile arthritis. Here we show that naive mice in which IL-6 signals have been transiently blocked during the juvenile period develop normally. The fatal immunogenic reactions recorded earlier by repeated administration of the chosen rat anti-mouse IL-6R antibody, MR16-1, to mice were avoided successfully by application of a high loading dose followed by lower maintenance doses, with the support of modeling data. The high loading-dose regimen enabled us to conduct assessments without any major interference due to immunogenicity. Transient and complete inhibition of IL-6 signals from postnatal days 22 to 79 in mice exhibited no biologically important changes in sexual maturation or development of immune and skeletal systems. Although tendencies toward reductions of peripheral blood T-cell counts were observed, normal levels of antigen-specific IgG/IgM antibody productions indicating sufficient immunological functions were confirmed. Our results demonstrate that blockage of IL-6R by the neutralizing antibody does not affect juvenile development. This may be in part due to the generation or existence of compensatory pathways in the whole body system.


Asunto(s)
Anticuerpos Antiidiotipos/farmacología , Anticuerpos Neutralizantes/farmacología , Huesos/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Receptores de Interleucina-6/antagonistas & inhibidores , Reproducción/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Enfermedades Autoinmunes/inmunología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Sistema Inmunológico/metabolismo , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Receptores de Interleucina-6/inmunología
2.
Toxicol In Vitro ; 66: 104841, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32247040

RESUMEN

An emerging structure for anti-tumor antibody drugs utilizes a bispecific antibody (BiAb) that recognizes a tumor surface antigen and CD3 on T cells. An impurity that commonly contaminates these BiAb products is an anti-CD3 monoclonal antibody (mAb). The most plausible cause of toxic activity by an anti-CD3 mAb is the induction of cytokines via T cell activation. In this in vitro study, we compared cytokine induction and T cell activation after treatment with an anti-glypican-3/CD3 BiAb (ERY974), anti-CD3 mAb impurity (aCD3), or ERY974 spiked with 5% aCD3. We found that contamination with up to 5% aCD3 did not affect cytokine release by ERY974. Cytokine levels induced by ERY974 in the presence of target cells were significantly higher than those induced by aCD3, but were very similar to those by the spiked treatment. The results supported the specification of a 5% limit for aCD3. OKT-3 had much higher activity to induce cytokines from peripheral blood mononuclear cells in an in vitro assay than aCD3. This suggests that specification limit should be decided for each type of anti-CD3 impurity that affects T cell-activating BiAb drug products. In vitro cytokine assays can provide useful information for determining these specification limits.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Complejo CD3/inmunología , Citocinas/inmunología , Linfocitos T/efectos de los fármacos , Línea Celular Tumoral , Contaminación de Medicamentos , Glipicanos/inmunología , Humanos , Linfocitos T/inmunología
3.
Mutat Res ; 609(1): 102-15, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16916616

RESUMEN

In order to create a novel in vitro test system for detection of large deletions and point mutations, we developed an immortalized cell line. A SV40 large T antigen expression unit was introduced into fibroblasts derived from gpt delta mouse lung tissue and a selected clone was established as the gpt delta L1 (GDL1) cell line. The novel GDL1 cells were examined for mutant frequencies (MFs) and for molecular characterization of mutations induced by mitomycin C (MMC). The GDL1 cells were treated with MMC at doses of 0.025, 0.05, and 0.1 microg/mL for 24h and mutations were detected by Spi- and 6-thioguanine (6-TG) selections. The MFs of the MMC-treated cells increased up to 3.4-fold with Spi- selection and 3.5-fold with 6-TG selection compared to MFs of untreated cells. In the Spi- mutants, the number of large (up to 76 kilo base pair (kbp)) deletion mutations increased. A majority of the large deletion mutations had 1-4 base pairs (bp) of microhomology in the deletion junctions. A number of the rearranged deletion mutations were accompanied with deletions and insertions of up to 1.1 kbp. In the gpt mutants obtained from 6-TG selection, single base substitutions of G:C to T:A, tandem base substitutions occurring at the 5'-GG-3' or 5'-CG-3' sequence, and deletion mutations larger than 2 bp were increased. We compared the spectrum of MMC-induced mutations observed in vitro to that of in vivo using gpt delta mice, which we reported previously. Although a slight difference was observed in MMC-induced mutation spectra between in vitro and in vivo, the mutations detected in vitro included all of the types of mutations observed in vivo. The present study demonstrates that the newly established GDL1 cell line is a useful tool to detect and analyze various mutations including large deletions in mammalian cells.


Asunto(s)
Proteínas de Escherichia coli/genética , Mitomicina/toxicidad , Mutación/efectos de los fármacos , Pentosiltransferasa/genética , Alquilantes/toxicidad , Animales , Bacteriófago lambda/genética , Secuencia de Bases , Línea Celular Transformada , Genes Virales/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Pruebas de Mutagenicidad/métodos , Mutación/genética , Reproducibilidad de los Resultados , Eliminación de Secuencia/efectos de los fármacos , Eliminación de Secuencia/genética
4.
J Toxicol Sci ; 28(3): 123-38, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12974605

RESUMEN

We investigated the mechanism of hemolytic anemia detected in a repeated-dose toxicity study using cynomolgus monkeys that were treated with a humanized antibody drug. This drug was an IgG1 monoclonal antibody (MoAb) that binds to the human HM1.24 antigen named anti-HM1.24 MoAb. The presence of the HM1.24 antigen on the erythrocyte membranes and the erythrocyte agglutination following the addition of anti-HM1.24 MoAb was examined. In addition, an indirect Coombs' test, a hemolysis assay and the measurement of anti-single stranded-DNA antibodies were performed using test animal serum or plasma. The specific binding of FITC- and 125I-labeled anti-HM1.24 MoAb to the erythrocyte membrane was not observed. HM1.24 antigen was not identified on the erythrocyte membranes. However, a high concentration (more than 713 microg/mL) of anti-HM1.24 MoAb hemagglutinated the erythrocyte suspensions. The cause of this agglutination was unclear, but it is assumed that the non-specific binding and/or adhesion caused the direct agglutination. In the examination using test serum from the anemic monkeys, a positive reaction in the indirect Coombs' test was noted. Moreover, in these Coombs' test-positive animals, the production of anti-single stranded-DNA antibodies was sequentially increased. In the female monkey sacrificed in extremis due to severe anemia, an in vitro hemolytic reaction was detected attributable to complement activation. From these results, the hemolytic anemia detected in the repeated-dose toxicity study was diagnosed as a drug-induced autoimmune hemolytic anemia (AIHA) and the primary cause was assumed to be production of IgG class anti-erythrocyte autoantibodies.


Asunto(s)
Anemia Hemolítica Autoinmune/inducido químicamente , Anticuerpos Monoclonales/toxicidad , Macaca fascicularis , Glicoproteínas de Membrana/inmunología , Anemia Hemolítica Autoinmune/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos de Superficie/inmunología , Autoanticuerpos/análisis , Prueba de Coombs , ADN de Cadena Simple/inmunología , Relación Dosis-Respuesta a Droga , Agregación Eritrocitaria/efectos de los fármacos , Agregación Eritrocitaria/inmunología , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/inmunología , Eritrocitos/efectos de los fármacos , Eritrocitos/inmunología , Femenino , Citometría de Flujo , Hemólisis/efectos de los fármacos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/toxicidad , Masculino , Glicoproteínas de Membrana/metabolismo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA