Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem Biophys Res Commun ; 696: 149504, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219489

RESUMEN

Regulated intramembrane proteolysis (RIP) is a two-step processing mechanism for transmembrane proteins consisting of ectodomain shedding (shedding), which removes the extracellular domain through juxtamembrane processing and intramembrane proteolysis, which processes membrane-anchored shedding products within the transmembrane domain. RIP irreversibly converts one transmembrane protein into multiple soluble proteins that perform various physiological functions. The only requirement for the substrate of γ-secretase, the major enzyme responsible for intramembrane proteolysis of type I transmembrane proteins, is the absence of a large extracellular domain, and it is thought that γ-secretase can process any type I membrane protein as long as it is shed. In the present study, we showed that the shedding susceptible type I membrane protein VIP36 (36 kDa vesicular integral membrane protein) and its homolog, VIPL, have different γ-secretase susceptibilities in their transmembrane domains. Analysis of the substitution mutants suggested that γ-secretase susceptibility is regulated by C-terminal amino acids in the transmembrane domain. We also compared the transmembrane domains of several shedding susceptible membrane proteins and found that each had a different γ-secretase susceptibility. These results suggest that the transmembrane domain is not simply a stretch of hydrophobic amino acids but is an important element that regulates membrane protein function by controlling the lifetime of the membrane-anchored shedding product.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Lectinas , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Membrana Celular/metabolismo
2.
J Biol Chem ; 295(35): 12343-12352, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32580944

RESUMEN

Ectodomain shedding is a post-translational modification mechanism by which the entire extracellular domain of membrane proteins is liberated through juxtamembrane processing. Because shedding rapidly and irreversibly alters the characteristics of cells, this process is properly regulated. However, the molecular mechanisms governing the propensity of membrane proteins to shedding are largely unknown. Here, we present evidence that negatively charged amino acids within the stalk region, an unstructured juxtamembrane region at which shedding occurs, contribute to shedding susceptibility. We show that two activated leukocyte cell adhesion molecule (ALCAM) protein variants produced by alternative splicing have different susceptibilities to ADAM metallopeptidase domain 17 (ADAM17)-mediated shedding. Of note, the inclusion of a stalk region encoded by a 39-bp-long alternative exon conferred shedding resistance. We found that this alternative exon encodes a large proportion of negatively charged amino acids, which we demonstrate are indispensable for conferring the shedding resistance. We also show that the introduction of negatively charged amino acids into the stalk region of shedding-susceptible ALCAM variant protein attenuates its shedding. Furthermore, we observed that negatively charged amino acids residing in the stalk region of Erb-B2 receptor tyrosine kinase 4 (ERBB4) are indispensable for its shedding resistance. Collectively, our results indicate that negatively charged amino acids within the stalk region interfere with the shedding of multiple membrane proteins. We conclude that the composition of the stalk region determines the shedding susceptibility of membrane proteins.


Asunto(s)
Proteína ADAM17/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Membrana Celular/metabolismo , Receptor ErbB-4/metabolismo , Animales , Ratones , Dominios Proteicos , Células RAW 264.7
3.
J Cell Sci ; 132(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31085713

RESUMEN

Ligand-induced activation of epidermal growth factor receptor (EGFR) initiates trafficking events that re-localize the receptor from the cell surface to intracellular endocytic compartments. EGFR-containing endosomes are transported to lysosomes for degradation by the dynein-dynactin motor protein complex. However, this cargo-dependent endosomal trafficking mechanism remains largely uncharacterized. Here, we show that GTP-bound Rab7 is phosphorylated on S72 by leucine-rich repeat kinase 1 (LRRK1) at the endosomal membrane. This phosphorylation promotes the interaction of Rab7 (herein referring to Rab7a) with its effector RILP, resulting in recruitment of the dynein-dynactin complex to Rab7-positive vesicles. This, in turn, facilitates the dynein-driven transport of EGFR-containing endosomes toward the perinuclear region. These findings reveal a mechanism regulating the cargo-specific trafficking of endosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilación , Transporte de Proteínas/fisiología , Proteínas de Unión a GTP rab7
4.
Genes Cells ; 22(2): 237-244, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28084684

RESUMEN

Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broad-spectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Proteínas ADAM/metabolismo , Animales , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/fisiología , Células Cultivadas , Humanos , Inmunoglobulinas/metabolismo , Metaloproteasas/metabolismo , Neuronas/metabolismo , Proteómica , Transducción de Señal
5.
J Biol Chem ; 286(50): 43154-63, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22016386

RESUMEN

Ectodomain shedding is a posttranslational modification mechanism, which liberates extracellular domains of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Shedding is a unique and effective mechanism for inducing multifaceted effects through the soluble extracellular domains released and/or the remaining membrane-bound portions; however, the physiological functions of shedding are not yet fully understood. In this study, we performed unbiased proteomic screening for shedding targets in a lipopolysaccharide (LPS)-stimulated macrophage cell line to elucidate a new immunological function of shedding. We identified VIP36 (36-kDa vesicular integral membrane protein), a lectin domain-containing transmembrane protein postulated as a cargo receptor for Golgi-to-endoplasmic reticulum transport, as a new target for shedding and found that the shedding of VIP36 occurs mainly on the cell surface. In addition, we demonstrate that the amount of VIP36 precisely regulates phagocytosis in macrophages and that the shedding of VIP36 is required for this regulation. These results substantially expand our knowledge of the immunological and cell biological functions of both the shedding process and VIP36 itself.


Asunto(s)
Macrófagos/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fagocitosis/fisiología , Animales , Western Blotting , Línea Celular , Humanos , Macrófagos/citología , Lectinas de Unión a Manosa/genética , Proteínas de Transporte de Membrana/genética , Ratones , Fagocitosis/genética , Procesamiento Proteico-Postraduccional , Proteómica/métodos
6.
J Cell Biol ; 158(2): 221-6, 2002 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12119356

RESUMEN

Communication between different signaling pathways enables cells to coordinate the responses to diverse environmental signals. Activation of the transmembrane growth factor precursors plays a critical role in this communication and often involves metalloprotease-mediated proteolysis. Stimulation of G protein-coupled receptors (GPCR) transactivates the EGF receptors (EGFRs), which occurs via a metalloprotease-dependent cleavage of heparin-binding EGF (HB-EGF). However, the metalloprotease mediating the transactivation remains elusive. We show that the integral membrane metalloprotease Kuzbanian (KUZ; ADAM10), which controls Notch signaling in Drosophila, stimulates GPCR transactivation of EGFR. Upon stimulation of the bombesin receptors, KUZ increases the docking and activation of adaptors Src homology 2 domain-containing protein and Gab1 on the EGFR, and activation of Ras and Erk. In contrast, transfection of a protease domain-deleted KUZ, or blocking endogenous KUZ by morpholino antisense oligonucleotides, suppresses the transactivation. The effect of KUZ on shedding of HB-EGF and consequent transactivation of the EGFR depends on its metalloprotease activity. GPCR activation enhances the association of KUZ and its substrate HB-EGF with tetraspanin CD9. Thus, KUZ regulates the relay between the GPCR and EGFR signaling pathways.


Asunto(s)
Desintegrinas/metabolismo , Proteínas de Drosophila , Receptores ErbB/metabolismo , Metaloendopeptidasas/metabolismo , Transducción de Señal , Activación Transcripcional , Animales , Células COS , Desintegrinas/genética , Drosophila , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular , Metaloendopeptidasas/genética , Transducción de Señal/genética
7.
FEBS J ; 274(6): 1576-87, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17480206

RESUMEN

Prefractionation procedures facilitate the identification of lower-abundance proteins in proteome analysis. Here we have optimized the conditions for immobilized metal affinity chromatography (IMAC) to enrich for phosphoproteins. The metal ions, Ga(III), Fe(III), Zn(II), and Al(III), were compared for their abilities to trap phosphoproteins; Ga(III) was the best. Detailed analyses of the pH and ionic strength for IMAC enabled us to determine the optimal conditions (pH 5.5 and 0.5 m NaCl). When whole cell lysates were fractionated in this way, about one-tenth of the total protein was recovered in the eluate, and the recovery of phosphorylated extracellular signal-regulated kinase (ERK) was more than 90%. Phosphorylated forms of ribosomal S6 kinase (RSK) and Akt were also enriched efficiently under the same conditions. Our Ga(III) IMAC and a commercially available purification kit for phosphoproteins performed similarly, with a slight difference in the spectrum of phosphoproteins. When phosphoproteins enriched from NIH3T3 cells in which ERK was either activated or suppressed were analyzed by two-dimensional fluorescence difference gel electrophoresis, phosphorylated ERK was detected as discrete spots unique to ERK-activated cells, which overlapped with surrounding spots in the absence of prefractionation. We applied the same technique to search for Akt substrates and identified Abelson interactor 1 as a novel potential target. These results demonstrate the efficacy of phosphoprotein enrichment by IMAC and suggest that this procedure will be of general use in phosphoproteome research.


Asunto(s)
Cromatografía de Afinidad/métodos , Fosfoproteínas/aislamiento & purificación , Proteoma , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Metales , Ratones , Células 3T3 NIH , Fosfoproteínas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo
8.
Sci Rep ; 7: 46174, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393893

RESUMEN

Ectodomain shedding (shedding) is a post-translational modification, which liberates the extracellular domain of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Because shedding alters characteristics of cells in a rapid and irreversible manner, it should be strictly regulated. However, the molecular mechanisms determining membrane protein susceptibility to shedding (shedding susceptibility) are largely unknown. Here we report that alternative splicing can give rise to both shedding-susceptible and shedding-resistant CADM1 (cell adhesion molecule 1) variant proteins. We further show that O-glycans adjacent to the shedding cleavage site interfere with CADM1 shedding, and the only 33-bp alternative exon confers shedding susceptibility to CADM1 by inserting five non-glycosylatable amino acids between interfering O-glycans and the shedding cleavage site. These results demonstrate that shedding susceptibility of membrane protein can be determined at two different levels of its biosynthesis pathway, alternative splicing and O-glycosylation.


Asunto(s)
Empalme Alternativo/genética , Molécula 1 de Adhesión Celular/química , Molécula 1 de Adhesión Celular/genética , Proteína ADAM17/metabolismo , Empalme Alternativo/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Molécula 1 de Adhesión Celular/metabolismo , Exones/genética , Glicosilación/efectos de los fármacos , Marcaje Isotópico , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Proteómica , Células RAW 264.7 , Receptores Inmunológicos/metabolismo , Treonina/genética
9.
J Proteomics ; 98: 233-43, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24456812

RESUMEN

Ectodomain shedding (shedding) is a posttranslational modification mechanism, which liberates extracellular domains of membrane proteins through juxtamembrane processing. Because shedding alters cell characteristics in a rapid and irreversible manner, it must be strictly regulated. However, the regulatory mechanisms of shedding in response to environmental changes remain obscure. To evaluate the regulatory mechanisms of endogenous shedding, we previously developed a proteomic screening system to identify shedding targets. This system revealed a comprehensive picture of membrane proteins shed under defined conditions. In this study, we have improved the screening system to compare the shedding patterns in a mouse macrophage cell line treated with two different shedding inducers, lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol 13-acetate (TPA). We show here that LPS simultaneously activates the shedding of multiple membrane proteins. We further show that TPA specifically activates the shedding of αM/ß2 integrin (Mac-1), which was not shed upon LPS-stimulation of macrophages. These results clearly demonstrate that the regulation of endogenous membrane protein shedding is both stimulus- and substrate-specific. BIOLOGICAL SIGNIFICANCE: The shedding targets reported to date play pivotal roles in a variety of biological phenomena, including the immunological response, cell growth, cell adhesion and cell movement. In addition, several disease-related membrane proteins are shedding targets. Thus, understanding the regulation of shedding is important for the elucidation of pathogenesis and the development of therapeutic strategies. We submit that a comprehensive characterization of endogenous shedding is indispensable for understanding the regulatory mechanisms of shedding, and thus have developed a proteomic screening system to identify shedding targets. In this study, using our screening system, we demonstrate that different extracellular stimuli activate different types of shedding, even in a single cell. Our results prove that this proteomic approach is quite effective for the elucidation of the regulatory mechanisms of shedding.


Asunto(s)
Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteómica , Animales , Carcinógenos/farmacología , Línea Celular , Lipopolisacáridos/farmacología , Ratones , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Acetato de Tetradecanoilforbol/farmacología
10.
Proc Natl Acad Sci U S A ; 103(25): 9542-7, 2006 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-16769890

RESUMEN

Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels that are located on intracellular Ca(2+) stores. We previously identified an IP(3)R binding protein, termed IP(3)R binding protein released with IP(3) (IRBIT). Because IRBIT is released from IP(3)R by physiological concentrations of IP(3), we hypothesized that IRBIT is a signaling molecule that is released from IP(3)R and regulates downstream target molecules in response to the production of IP(3). Therefore, in this study, we attempted to identify the target molecules of IRBIT, and we succeeded in identifying Na(+)/HCO(3)(-) cotransporter 1 (NBC1) as an IRBIT binding protein. Of the two major splicing variants of NBC1, pancreas-type NBC1 (pNBC1) and kidney-type NBC1 (kNBC1), IRBIT was found to bind specifically to pNBC1 and not to bind to kNBC1. IRBIT binds to the N-terminal pNBC1-specific domain, and its binding depends on the phosphorylation of multiple serine residues of IRBIT. Also, an electrophysiological analysis in Xenopus oocytes revealed that pNBC1 requires coexpression of IRBIT to manifest substantial activity comparable with that of kNBC1, which displays substantial activity independently of IRBIT. These results strongly suggest that pNBC1 is the target molecule of IRBIT and that IRBIT has an important role in pH regulation through pNBC1. Also, our findings raise the possibility that the regulation through IRBIT enables NBC1 variants to have different physiological roles.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Adenosilhomocisteinasa/química , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Expresión Génica , Ratones , Datos de Secuencia Molecular , Oocitos , Fosforilación , Unión Proteica , Simportadores de Sodio-Bicarbonato/genética , Xenopus laevis
11.
Genes Dev ; 18(4): 381-6, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15004007

RESUMEN

Transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) function in Xenopus, Drosophila, and Caenorhabditis elegans development. Here we report that serine phosphorylation of STAT3 induced by TAK1-NLK cascade is essential fo TGF-beta-mediated mesoderm induction in Xenopus embryo. Depletion of TAK1, NLK, or STAT3 blocks TGF-beta-mediated mesoderm induction. Coexpression of NLK and STAT3 induces mesoderm by a mechanism that requires serine phosphorylation of STAT3. Activin activates NLK, which in turn directly phosphorylates STAT3. Moreover, depletion of either TAK1 or NLK inhibits endogenous serine phosphorylation of STAT3. These results provide the first evidence that TAK1-NLK-STAT3 cascade participates in TGF-beta-mediated mesoderm induction.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular , Mesodermo/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Transactivadores/genética , Factor de Crecimiento Transformador beta/fisiología , Proteínas de Xenopus/genética , Xenopus/embriología , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Drosophila/embriología , Embrión no Mamífero/fisiología , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas , Factor de Transcripción STAT3
12.
Genes Cells ; 8(8): 677-84, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12875653

RESUMEN

BACKGROUND: Wnt signalling plays a critical role in many developmental processes and tumorigenesis. Wnt/beta-catenin signalling induces the stabilization of cytosolic beta-catenin, which interacts with TCF/LEF-1 transcription factors, thereby inducing expression of Wnt-target genes. Recent evidence suggests that a specific MAP kinase pathway involving the MAP kinase kinase kinase TAK1 and the MAP kinase NLK counteract Wnt signalling. RESULTS: To identify NLK-interacting proteins, we performed yeast two-hybrid screening. We isolated the gene HMG2L1 and showed that injection of Xenopus HMG2L1 (xHMG2L1) mRNA into Xenopus embryos inhibited Wnt/beta-catenin-induced axis duplication and expression of Wnt/beta-catenin target genes. Moreover, xHMG2L1 inhibited beta-catenin-stimulated transcriptional activity in mammalian cells. CONCLUSIONS: Our findings indicate that xHMG2L1 may negatively regulate Wnt/beta-catenin signalling, and that xHMG2L1 may play a role in early Xenopus development together with NLK.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Transcripción Genética , Xenopus laevis/embriología , Proteínas de Pez Cebra , Secuencia de Aminoácidos , Animales , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Microinyecciones , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Oocitos/fisiología , Unión Proteica , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/metabolismo , Transfección , Técnicas del Sistema de Dos Híbridos , Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA