Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 51(12): 6101-6119, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158230

RESUMEN

Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.


Asunto(s)
Acinetobacter baumannii , Proteínas de Escherichia coli , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acinetobacter baumannii/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Small ; 20(6): e2305052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798622

RESUMEN

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Asunto(s)
Nanopartículas , Polimixina B , Polimixina B/farmacología , Liposomas/farmacología , Antibacterianos/farmacología , Bacterias Gramnegativas , Klebsiella pneumoniae , Polisacáridos Bacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
3.
BMC Microbiol ; 23(1): 137, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202723

RESUMEN

BACKGROUND: Acinetobacter baumannii is an opportunistic human pathogen that causes a variety of infections in immunosuppressed individuals and patients in intensive care units. The success of this pathogen in nosocomial settings can be directly attributed to its persistent nature and its ability to rapidly acquire multidrug resistance. It is now considered to be one of the top priority pathogens for development of novel therapeutic approaches. Several high-throughput techniques have been utilised to identify the genetic determinants contributing to the success of A. baumannii as a global pathogen. However, targeted gene-function studies remain challenging due to the lack of appropriate genetic tools. RESULTS: Here, we have constructed a series of all-synthetic allelic exchange vectors - pALFI1, pALFI2 and pALFI3 - with suitable selection markers for targeted genetic studies in highly drug resistant A. baumannii isolates. The vectors follow the Standard European Vector Architecture (SEVA) framework for easy replacement of components. This method allows for rapid plasmid construction with the mutant allele, efficient conjugational transfer using a diaminopimelic acid-dependent Escherichia coli donor strain, efficient positive selection using the suitable selection markers and finally, sucrose-dependent counter-selection to obtain double-crossovers. CONCLUSIONS: We have used this method to create scar-less deletion mutants in three different strains of A. baumannii, which resulted in up to 75% deletion frequency of the targeted gene. We believe this method can be effectively used to perform genetic manipulation studies in multidrug resistant Gram-negative bacterial strains.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacología , Alelos , Plásmidos/genética , Farmacorresistencia Bacteriana Múltiple/genética , Mutagénesis , Pruebas de Sensibilidad Microbiana
4.
Chemistry ; 27(6): 2021-2029, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33231906

RESUMEN

Resistance to currently available antifungal drugs has quietly been on the rise but overshadowed by the alarming spread of antibacterial resistance. There is a striking lack of attention to the threat of drug-resistant fungal infections, with only a handful of new drugs currently in development. Given that metal complexes have proven to be useful new chemotypes in the fight against diseases such as cancer, malaria, and bacterial infections, it is reasonable to explore their possible utility in treating fungal infections. Herein we report a series of cobalt(III) Schiff base complexes with broad-spectrum antifungal activity. Some of these complexes show minimum inhibitory concentrations (MIC) in the low micro- to nanomolar range against a series of Candida and Cryptococcus yeasts. Additionally, we demonstrate that these compounds show no cytotoxicity against both bacterial and human cells. Finally, we report the first in vivo toxicity data on these compounds in Galleria mellonella, showing that doses as high as 266 mg kg-1 are tolerated without adverse effects, paving the way for further in vivo studies of these complexes.


Asunto(s)
Antifúngicos/farmacología , Antibacterianos/farmacología , Candida , Cobalto , Complejos de Coordinación/toxicidad , Humanos , Pruebas de Sensibilidad Microbiana , Bases de Schiff
5.
Infect Immun ; 88(8)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32513855

RESUMEN

The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. More than 90 genes contributed to resistance in one or more strains, but only three, rfaH, lpp, and arnD, were common to all four strains. Deletion of the antiterminator rfaH, which controls the expression of capsule and O side chains, resulted in dramatic complement resistance reductions in all strains. The murein lipoprotein gene lpp promoted capsule retention through a mechanism dependent on its C-terminal lysine residue; its deletion led to modest reductions in complement resistance. Binding experiments with the complement components C3b and C5b-9 showed that the underlying mechanism of evasion varied in the four strains: B5055 and NTUH-K2044 appeared to bypass recognition by complement entirely, while ATCC 43816 and RH201207 were able to resist killing despite being associated with substantial levels of C5b-9. All rfaH and lpp mutants bound C3b and C5b-9 in large quantities. Our findings show that, even among this small selection of isolates, K. pneumoniae adopts differing mechanisms and utilizes distinct gene sets to avoid complement attack.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Carboxiliasas/inmunología , Regulación Bacteriana de la Expresión Génica/inmunología , Genes Bacterianos , Evasión Inmune , Klebsiella pneumoniae/inmunología , Factores de Elongación de Péptidos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Actividad Bactericida de la Sangre/inmunología , Carboxiliasas/deficiencia , Carboxiliasas/genética , Complemento C3b/genética , Complemento C3b/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Biblioteca de Genes , Humanos , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Mutación , Factores de Elongación de Péptidos/deficiencia , Factores de Elongación de Péptidos/genética , Análisis de Secuencia de ADN
6.
Nucleic Acids Res ; 43(19): 9529-40, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26350213

RESUMEN

Genes encoding toxin-antitoxin (TA) systems are near ubiquitous in bacterial genomes and they play key roles in important aspects of bacterial physiology, including genomic stability, formation of persister cells under antibiotic stress, and resistance to phage infection. The CptIN locus from Eubacterium rectale is a member of the recently-discovered Type III class of TA systems, defined by a protein toxin suppressed by direct interaction with a structured RNA antitoxin. Here, we present the crystal structure of the CptIN protein-RNA complex to 2.2 Å resolution. The structure reveals a new heterotetrameric quaternary organization for the Type III TA class, and the RNA antitoxin bears a novel structural feature of an extended A-twist motif within the pseudoknot fold. The retention of a conserved ribonuclease active site as well as traits normally associated with TA systems, such as plasmid maintenance, implicates a wider functional role for Type III TA systems. We present evidence for the co-variation of the Type III component pair, highlighting a distinctive evolutionary process in which an enzyme and its substrate co-evolve.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , ARN Bacteriano/química , Ribonucleasas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Dominio Catalítico , Colifagos/fisiología , Cristalografía por Rayos X , Eubacterium/enzimología , Eubacterium/genética , Evolución Molecular , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos , Multimerización de Proteína , Ribonucleasas/genética
7.
Proc Natl Acad Sci U S A ; 110(3): E241-9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23267117

RESUMEN

Bacterial small RNAs perform numerous regulatory roles, including acting as antitoxic components in toxin-antitoxin systems. In type III toxin-antitoxin systems, small processed RNAs directly antagonize their toxin protein partners, and in the systems characterized the toxin and antitoxin components together form a trimeric assembly. In the present study, we sought to define how the RNA antitoxin, ToxI, inhibits its potentially lethal protein partner, ToxN. We show through cross-inhibition experiments with the ToxIN systems from Pectobacterium atrosepticum (ToxIN(Pa)) and Bacillus thuringiensis (ToxIN(Bt)) that ToxI RNAs are highly selective enzyme inhibitors. Both systems have an "addictive" plasmid maintenance phenotype. We demonstrate that ToxI(Pa) can inhibit ToxN(Pa) in vitro both in its processed form and as a repetitive precursor RNA, and this inhibition is linked to the self-assembly of the trimeric complex. Inhibition and self-assembly are both mediated entirely by the ToxI(Pa) RNA, with no requirement for cellular factors or exogenous energy. Finally, we explain the origins of ToxI antitoxin selectivity through our crystal structure of the ToxIN(Bt) complex. Our results show how a processed RNA pseudoknot can inhibit a deleterious protein with exquisite molecular specificity and how these self-contained and addictive RNA-protein pairs can confer different adaptive benefits in their bacterial hosts.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN no Traducido/química , ARN no Traducido/metabolismo , Secuencia de Aminoácidos , Antitoxinas/química , Antitoxinas/genética , Antitoxinas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Conformación de Ácido Nucleico , Pectobacterium/genética , Pectobacterium/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , ARN Bacteriano/genética , ARN no Traducido/genética , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
RNA Biol ; 12(9): 933-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26274022

RESUMEN

Members of the Bacillus cereus sensu lato group of bacteria often contain multiple large plasmids, including those encoding virulence factors in B. anthracis. Bacillus species can develop into spores in response to stress. During sporulation the genomic content of the cell is heavily compressed, which could result in counterselection of extrachromosomal genomic elements, unless they have robust stabilization and segregation systems. Toxin-antitoxin (TA) systems are near-ubiquitous in prokaryotes and have multiple biological roles, including plasmid stabilization during vegetative growth. Here, we have shown that a Type III TA system, based on an RNA antitoxin and endoribonuclease toxin, from plasmid pAW63 in Bacillus thuringiensis serovar kurstaki HD-73 can dramatically promote plasmid retention in populations undergoing sporulation and germination, and we provide evidence that this occurs through the post-segregational killing of plasmid-free forespores. Our findings show how an extremely common genetic module can be used to ensure plasmid maintenance during stress-induced developmental transitions, with implications for plasmid dynamics in B. cereus s.l. bacteria.


Asunto(s)
Bacillus thuringiensis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Plásmidos/genética , ARN Bacteriano/genética , Dosificación de Gen , Fenotipo , Esporas Bacterianas
9.
Biochem J ; 461(1): 87-98, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24712732

RESUMEN

AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/farmacología , Proteínas Bacterianas/farmacología , Catálisis , Cristalización , Modelos Moleculares , Mycobacterium tuberculosis/patogenicidad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología
10.
Nucleic Acids Res ; 40(13): 6158-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22434880

RESUMEN

Toxin-antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin-antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin-antitoxin systems encode protein toxins that are inhibited by pseudoknots of antitoxic RNA, encoded by short tandem repeats upstream of the toxin gene. Recent studies have identified the range of Type I and Type II systems within current sequence databases. Here, structure-based homology searches were combined with iterative protein sequence comparisons to obtain a current picture of the prevalence of Type III systems. Three independent Type III families were identified, according to toxin sequence similarity. The three families were found to be far more abundant and widespread than previously known, with examples throughout the Firmicutes, Fusobacteria and Proteobacteria. Functional assays confirmed that representatives from all three families act as toxin-antitoxin loci within Escherichia coli and at least two of the families confer resistance to bacteriophages. This study shows that active Type III toxin-antitoxin systems are far more diverse than previously known, and suggests that more remain to be identified.


Asunto(s)
Toxinas Bacterianas/clasificación , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Cromosomas Bacterianos , Sitios Genéticos , Genoma Bacteriano , Filogenia , Plásmidos/genética , ARN Bacteriano/química , ARN Bacteriano/clasificación , ARN Bacteriano/genética , Alineación de Secuencia , Homología Estructural de Proteína
11.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482354

RESUMEN

In supermarkets and chemists worldwide, consumers are faced with an array of antimicrobial domestic cleaning and personal hygiene products purporting to kill germs and keep people safe. Many of these proven active ingredients (biocides) encourage the development of antimicrobial resistance (AMR) in microbes and microbial populations, in turn increasing the likelihood of AMR infections. In order to understand and address the selective pressure towards AMR posed by the unrestricted use of biocides, it is necessary to understand which biocides are most frequently found in consumer products and the current regulatory framework that governs their use. In this research we survey the biocidal active ingredients in the major categories of cleaning and personal care products available from supermarkets and pharmacies in Australia, and comment on the regulations that dictate how these products are tested and marketed. Benzalkonium chloride and ethanol were the two most prevalent antimicrobial biocides in this study, while triclosan, which is banned in several jurisdictions, was found in a small number of products. In Australia, many antimicrobial consumer products are regulated for efficacy and safety under the Therapeutic Goods Act, but the potential to drive microbial adaptation and AMR is not considered. Overall this survey underscores the broad use and light regulation of antimicrobial biocides in products available to the general public in Australia, and provides an information resource to inform further research and stewardship efforts.

12.
Nat Commun ; 15(1): 7066, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152123

RESUMEN

DPANN is a widespread and diverse group of archaea characterized by their small size, reduced genome, limited metabolic pathways, and symbiotic existence. Known DPANN species are predominantly obligate ectosymbionts that depend on their host for proliferation. The structural and molecular details of host recognition, host-DPANN intercellular communication, and host adaptation in response to DPANN attachment remain unknown. Here, we use electron cryotomography (cryo-ET) to show that the Microcaldus variisymbioticus ARM-1 may interact with its host, Metallosphaera javensis AS-7 through intercellular proteinaceous nanotubes. Combining cryo-ET and sub-tomogram averaging, we show the in situ architectures of host and DPANN S-layers and the structures of the nanotubes in their primed and extended states. In addition, comparative proteomics and genomic analyses identified host proteomic changes in response to DPANN attachment. These results provide insights into the structural basis of host-DPANN communication and deepen our understanding of the host ectosymbiotic relationships.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Simbiosis , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Técnicas de Cocultivo/métodos , Proteómica/métodos , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Comunicación Celular , Archaea/metabolismo , Archaea/genética , Nanotubos/química
13.
Biochemistry ; 52(10): 1776-87, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23363292

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT, EC 2.4.2.18) is a homodimeric enzyme that catalyzes the reaction between 5'-phosphoribosyl 1'-pyrophosphate (PRPP) and anthranilate, as part of the tryptophan biosynthesis pathway. Here we present the results of the first chemical screen for inhibitors against Mycobacterium tuberculosis AnPRT (Mtb-AnPRT), along with crystal structures of Mtb-AnPRT in complex with PRPP and several inhibitors. Previous work revealed that PRPP is bound at the base of a deep cleft in Mtb-AnPRT and predicted two anthranilate binding sites along the tunnel leading to the PRPP binding site. Unexpectedly, the inhibitors presented here almost exclusively bound at the entrance of the tunnel, in the presumed noncatalytic anthranilate binding site, previously hypothesized to have a role in substrate capture. The potencies of the inhibitors were measured, yielding Ki values of 1.5-119 µM, with the strongest inhibition displayed by a bianthranilate compound that makes hydrogen bond and salt bridge contacts with Mtb-AnPRT via its carboxyl groups. Our results reveal how the substrate capture mechanism of AnPRT can be exploited to inhibit the enzyme's activity and provide a scaffold for the design of improved Mtb-AnPRT inhibitors that may ultimately form the basis of new antituberculosis drugs with a novel mode of action.


Asunto(s)
Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/genética , Antituberculosos/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Especificidad por Sustrato , ortoaminobenzoatos/metabolismo
14.
Mol Microbiol ; 83(4): 665-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22283468

RESUMEN

Bacteria are constantly threatened by predation from bacteriophage parasites and, in response, have evolved an array of resistance mechanisms. These resistance mechanisms then place greater selection pressure on the infecting bacteriophages, which develop counter-strategies in a perpetual 'arms race' between virus and host. Toxin-antitoxin (TA) loci are widespread in bacteria and can confer multiple benefits, including resistance to bacteriophages. The study by Otsuka and Yonesaki, published in this issue of Molecular Microbiology, describes a new plasmid-encoded TA system, lsoAB, which confers resistance to a dmd(-) mutant of bacteriophage T4 through the activity of the LsoA toxin. Infections with wild-type T4, however, are unaffected as the Dmd protein acts as an alternative antitoxin to LsoA, thus preventing its anti-bacteriophage activity. Dmd has also been shown to negate the activity of a related toxin, RnlA. This is a striking result indicating that Dmd can act as a promiscuous antitoxin, binding and inhibiting multiple toxin partners, when antitoxin activity is generally considered to be limited to a single cognate toxin. This study is an exciting addition to both the bacteriophage resistance and TA fields, and suggests a greater role for TA system-based resistance and counter-resistance in the world's oldest predator-prey relationship.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Bacteriófago T4/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Bacteriófago T4/genética , Bacteriófago T4/crecimiento & desarrollo , Escherichia coli/virología , Modelos Biológicos , Proteínas Virales/genética
15.
Nat Commun ; 14(1): 702, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759602

RESUMEN

Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic pathogens frequently co-isolated from polymicrobial infections. The infections where these pathogens co-exist can be more severe and recalcitrant to therapy than infections caused by either species alone, however there is a lack of knowledge on their potential synergistic interactions. In this study we characterise the genomes of A. baumannii and K. pneumoniae strains co-isolated from a single human lung infection. We examine various aspects of their interactions through transcriptomic, phenomic and phenotypic assays that form a basis for understanding their effects on antimicrobial resistance and virulence during co-infection. Using co-culturing and analyses of secreted metabolites, we discover the ability of K. pneumoniae to cross-feed A. baumannii by-products of sugar fermentation. Minimum inhibitory concentration testing of mono- and co-cultures reveals the ability for A. baumannii to cross-protect K. pneumoniae against the cephalosporin, cefotaxime. Our study demonstrates distinct syntrophic interactions occur between A. baumannii and K. pneumoniae, helping to elucidate the basis for their co-existence in polymicrobial infections.


Asunto(s)
Acinetobacter baumannii , Coinfección , Humanos , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Klebsiella pneumoniae/genética , Cefalosporinas , Pruebas de Sensibilidad Microbiana
16.
Nat Microbiol ; 8(11): 1995-2005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814070

RESUMEN

Concerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope. As cell respiration genes are required for A. baumannii fitness in biocides, we confirmed that sub-inhibitory concentrations of the biocides that dissipate membrane potential can promote A. baumannii tolerance to antibiotics that act intracellularly. Our results support the concern that residual biocides might promote antibiotic resistance in pathogenic bacteria.


Asunto(s)
Acinetobacter baumannii , Desinfectantes , Antibacterianos/farmacología , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Bacterias
17.
Cell Rep ; 42(6): 112551, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224021

RESUMEN

To kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation. Screening of a transposon library to select phage-resistant Klebsiella shows that the first receptor-binding event docks to saccharide epitopes in the capsule. We discover a second step of receptor binding, dictated by specific epitopes in an outer membrane protein. This additional and necessary event precedes phage DNA release to establish a productive infection. That such discrete epitopes dictate two essential binding events for phages has profound implications for understanding the evolution of phage resistance and what dictates host range, two issues critically important to translating knowledge of phage biology into phage therapies.


Asunto(s)
Bacteriófagos , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Porinas/genética , Porinas/metabolismo , Polisacáridos
18.
Nat Commun ; 13(1): 1065, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246533

RESUMEN

Naturally competent bacteria encode sophisticated protein machinery for the uptake and translocation of exogenous DNA into the cell. If this DNA is integrated into the bacterial genome, the bacterium is said to be naturally transformed. Most competent bacterial species utilise type IV pili for the initial DNA uptake step. These proteinaceous cell-surface structures are composed of thousands of pilus subunits (pilins), designated as major or minor according to their relative abundance in the pilus. Here, we show that the minor pilin FimT plays an important role in the natural transformation of Legionella pneumophila. We use NMR spectroscopy, in vitro DNA binding assays and in vivo transformation assays to understand the molecular basis of FimT's role in this process. FimT binds to DNA via an electropositive patch, rich in arginines, several of which are well-conserved and located in a conformationally flexible C-terminal tail. FimT orthologues from other Gammaproteobacteria share the ability to bind to DNA. Our results suggest that FimT plays an important role in DNA uptake in a wide range of competent species.


Asunto(s)
Proteínas Fimbrias , Legionella pneumophila , Proteínas Bacterianas/metabolismo , ADN/metabolismo , ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Transformación Bacteriana
19.
Microb Genom ; 8(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35166651

RESUMEN

Acinetobacter baumannii is a critically important pathogen known for its widespread antibiotic resistance and ability to persist in hospital-associated environments. Whilst the majority of A. baumannii infections are hospital-acquired, infections from outside the hospital have been reported with high mortality. Despite this, little is known about the natural environmental reservoir(s) of A. baumannii and the virulence potential underlying non-clinical strains. Here, we report the complete genome sequences of six diverse strains isolated from environments such as river, soil, and industrial sites around the world. Phylogenetic analyses showed that four of these strains were unrelated to representative nosocomial strains and do not share a monophyletic origin, whereas two had sequence types belonging to the global clone lineages GC1 and GC2. Further, the majority of these strains harboured genes linked to virulence and stress protection in nosocomial strains. These genotypic properties correlated well with in vitro virulence phenotypic assays testing resistance to abiotic stresses, serum survival, and capsule formation. Virulence potential was confirmed in vivo, with most environmental strains able to effectively kill Galleria mellonella greater wax moth larvae. Using phenomic arrays and antibiotic resistance profiling, environmental and nosocomial strains were shown to have similar substrate utilisation patterns although environmental strains were distinctly more sensitive to antibiotics. Taken together, these features of environmental A. baumannii strains suggest the existence of a strain-specific distinct gene pools for niche specific adaptation. Furthermore, environmental strains appear to be equally virulent as contemporary nosocomial strains but remain largely antibiotic sensitive.


Asunto(s)
Acinetobacter baumannii/clasificación , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Filogenia , Factores de Virulencia/genética , Infecciones por Acinetobacter , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/farmacología , Biopelículas , Infección Hospitalaria , Hospitales , Mariposas Nocturnas , Virulencia/genética , Secuenciación Completa del Genoma
20.
Pathog Dis ; 79(3)2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33512418

RESUMEN

Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for non-hypervirulent strains which cause the majority of infections. The insect Galleria mellonella larva is a widely used alternative model organism for bacterial pathogens. We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of G. mellonella, to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function. Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors specific to ST258, reflecting strain-dependent fitness effects. Our analysis also identified a role for the metalloregulatory protein NfeR (YqjI) in virulence. Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae, and provides a framework for using the highly flexible and easily scalable G. mellonella infection model to dissect molecular virulence mechanisms of bacterial pathogens.


Asunto(s)
Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Larva/microbiología , Mariposas Nocturnas/microbiología , Factores de Virulencia/genética , Virulencia , Animales , Proteínas Bacterianas/genética , ADN Bacteriano , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Prueba de Complementación Genética , Genoma Bacteriano , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Proteínas de la Membrana/genética , Mutagénesis , Polisacáridos/genética , Purinas , Sideróforos/genética , Sideróforos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA