Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 169(7): 147, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879716

RESUMEN

African swine fever virus (ASFV) isolates are grouped and tracked through analysis of their central variable region (CVR) sequences. In this study, sequences of 70 ASFV isolates collected from different regions of Russia between 2018 and 2022 were analyzed. The analysis based on the CVR sequences indicated that the isolates belonged to three distinct groups. Group 1 shared 100% sequence identity to the isolate Georgia 2007/1. Group 5 had a C > A single-nucleotide polymorphism (SNP) at position 601, while group 13 is new and unique to the Far East of Russia, with five isolates from the Amur, Khabarovsk, and Primorsky regions. These findings demonstrate a new approach to phylogenomics and cladistics of ASFV isolates within genotype II on the basis of the CVR.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Filogenia , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/clasificación , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Federación de Rusia , Fiebre Porcina Africana/virología , Porcinos , Polimorfismo de Nucleótido Simple
2.
Mol Biol Rep ; 51(1): 1011, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320407

RESUMEN

INTRODUCTION: African swine fever (ASF) is a contagious viral disease that affects pigs and wild boars, with a mortality rate of up to 100% in susceptible animals. The virus has been circulating in Europe and Asia since its introduction in 2007. Initially, all studied isolates were identified as genotype II, but in 2021 genotype I was reported in China. Later in 2023, the first recombinant virus of genotype I and II was identified in China, with an isolate dating back to 2021, this was followed by the detection of 6 recombinant isolates in Vietnam. METHODS: In this study, an ASFV isolate from the Primorsky Region of Russia obtained from a domestic pig was analyzed by sequencing several genome markers as well as the full genome. Eight pigs were infected with the isolate to assess its virulence. RESULTS: Virus replication in cell culture showed hemadsorption, while sequencing of genome markers clustered the isolate into both genotype I and genotype II. The whole-genome sequence showed that the Russian isolate shared a 99.99% identity with recombinant isolates described earlier in China. Experimental animals developed ASF disease after the introduction of a low dose of the virus (10 HAU50) and died within 7 days post-infection, presenting an acute form of the disease. CONCLUSION: This is the first report on recombinant ASFV in Russia's territory. The results once again confirm the transboundary nature of the disease, demonstrating the vulnerability of the global pig industry underscoring the need for developing new ASF vaccines effective against recombinant strains and emphasizing the importance of continuous molecular monitoring to detect emerging threats promptly.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genoma Viral , Genotipo , Filogenia , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/patogenicidad , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Federación de Rusia/epidemiología , Porcinos , Genoma Viral/genética , Sus scrofa/virología , Recombinación Genética/genética , Secuenciación Completa del Genoma/métodos
3.
Pathogens ; 11(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015040

RESUMEN

African swine fever virus (ASFV), classified as genotype II, was introduced into Georgia in 2007, and from there, it spread quickly and extensively across the Caucasus to Russia, Europe and Asia. The molecular epidemiology and evolution of these isolates are predominantly investigated by means of phylogenetic analysis based on complete genome sequences. Since this is a costly and time-consuming endeavor, short genomic regions containing informative polymorphisms are pursued and utilized instead. In this study, sequences of the central variable region (CVR) located within the B602L gene were determined for 55 ASFV isolates submitted from 526 active African swine fever (ASF) outbreaks occurring in 23 different regions across the Russian Federation (RF) between 2013 and 2017. The new sequences were compared to previously published data available from Genbank, representing isolates from Europe and Asia. The sequences clustered into six distinct groups. Isolates from Estonia clustered into groups 3 and 4, whilst sequences from the RF were divided into the remaining four groups. Two of these groups (5 and 6) exclusively contained isolates from the RF, while group 2 included isolates from Russia as well as Chechnya, Georgia, Armenia, Azerbaijan and Ukraine. In contrast, group 1 was the largest, containing sequences from the RF, Europe and Asia, and was represented by the sequence from the first isolate in Georgia in 2007. Based on these results, it is recommended that the CVR sequences contain significant informative polymorphisms to be used as a marker for investigating the epidemiology and spread of genotype II ASFVs circulating in the RF, Europe and Asia.

4.
Front Vet Sci ; 9: 1019808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686186

RESUMEN

Introduction: Since the first report of outbreaks of African swine fever (ASF) in Georgia in 2007, the disease has expanded into Europe, Russia, and Asia, spreading rapidly via contact with infected animals including domestic pigs and wild boars. The vast expansion of this Genotype II African swine fever virus (ASFV) across wide-ranging territories and hosts inevitably led to the acquisition of novel mutations. These mutations could be used to track the molecular epidemiology of ASFV, provided that they are unique to strains restricted within a certain area. Whilst whole-genome sequencing remains the gold standard for examining evolutionary changes, sequencing of a single locus with significant variation and resolution power could be used as a rapid and cost-effective alternative to characterize multiple isolates from a single or related outbreak. Material and methods: ASFVs obtained during active ASF outbreaks in the Russian region of Kaliningrad between 2017 and 2019 were examined. Since all of the viruses belonged to Genotype II and no clear differentiation based on central variable region (CVR) sequencing was observed, the whole-genome sequences of nine ASFV isolates from this region were determined. To obtain insights into the molecular evolution of these isolates, their sequences were compared to isolates from Europe, Asia, and Africa. Results: Phylogenetic analysis based on the whole-genome sequences clustered the new isolates as a sister lineage to isolates from Poland and Germany. This suggests a possible shared origin followed by the addition of novel mutations restricted to isolates from this region. This status as a sister lineage was mirrored when analyzing polymorphisms in MGF-505-5R and MGF-110-7L, whilst a polymorphism unique to sequences from Kaliningrad was identified at locus K145R. This newly identified mutation was able to distinguish the isolates obtained from Kaliningrad with sequences of Genotype II ASFVs available on GenBank. Discussion: The findings of this study suggest that ASFVs circulating in Kaliningrad have recently obtained this mutation providing an additional marker to the mutations previously described.

5.
Pathogens ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925986

RESUMEN

In this study, we report on the full genome phylogenetic analysis of four ASFV isolates obtained from wild boars in Russia. These samples originated from two eastern and two western regions of Russia in 2019. Phylogenetic analysis indicated that the isolates were assigned to genotype II and grouped according to their geographical origins. The two eastern isolates shared 99.99% sequence identity with isolates from China, Poland, Belgium, and Moldova, whereas the western isolates had 99.98% sequence identity with isolates from Lithuania and the original Georgia 2007 isolate. Based on the full genome phylogenies, we identified three single locus targets, MGF-360-10L, MGF-505-9R, and I267L, that yielded the same resolving power as the full genomes. The ease of alignment and a high level of variation make these targets a suitable selection as additional molecular markers in future ASFV phylogenetic practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA