Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 224: 21-34, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295894

RESUMEN

Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.


Asunto(s)
Bacterias , Biopelículas , Espectrometría de Masas , Bacterias/genética , Diagnóstico por Imagen
2.
J Bacteriol ; 206(4): e0009524, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38564677

RESUMEN

Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in Pseudomonas aeruginosa colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly. To investigate how these structures benefit a biofilm community we characterized three recurrent types of acellular aggregates with distinct geometries that were each abundant in specific areas of these biofilms. Alkyl quinolones (AQs) were essential for the formation of all aggregate types with AQ signatures outside the aggregates below the limit of detection. These acellular aggregates spatially sequester AQs and differentiate the biofilm space. However, the three types of aggregates showed differing properties in their size, associated cell death, and lipid content. The largest aggregate type co-localized with spatially confined cell death that was not mediated by Pf4 bacteriophage. Biofilms lacking AQs were absent of localized cell death but exhibited increased, homogeneously distributed cell death. Thus, these AQ-rich aggregates regulate metabolite accessibility, differentiate regions of the biofilm, and promote survival in biofilms.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen with the ability to cause infection in the immune-compromised. It is well established that P. aeruginosa biofilms exhibit resilience that includes decreased susceptibility to antimicrobial treatment. This work examines the self-assembled heterogeneity in biofilm communities studying acellular aggregates, regions of condensed matter requiring alkyl quinolones (AQs). AQs are important to both virulence and biofilm formation. Aggregate structures described here spatially regulate the accessibility of these AQs, differentiate regions of the biofilm community, and despite their association with autolysis, correlate with improved P. aeruginosa colony biofilm survival.


Asunto(s)
Infecciones por Pseudomonas , Quinolonas , Humanos , Quinolonas/metabolismo , Biopelículas , Infecciones por Pseudomonas/microbiología , Virulencia , Pseudomonas aeruginosa/metabolismo
3.
Anal Bioanal Chem ; 414(4): 1691-1698, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850244

RESUMEN

Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.


Asunto(s)
Myxococcus xanthus/metabolismo , Técnicas de Cultivo de Célula , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Metaboloma , Myxococcus xanthus/química , Myxococcus xanthus/crecimiento & desarrollo , Espectrometría Raman
4.
Anal Chem ; 93(43): 14481-14488, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34661405

RESUMEN

Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.


Asunto(s)
Nanopartículas del Metal , Nanoporos , Electrodos , Oro , Fenazinas , Pseudomonas aeruginosa , Piocianina
5.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33579687

RESUMEN

There are many hydrated surface niches that are neither static nor continuously flowing that are colonized by microbes such as bacteria. Such periodic hydrodynamic regimes are distinct from aquatic systems where microbial dissemination is reasonably predicted by assuming continuous flow or static systems where motile microbes largely control their own fate. Here we show how non-motile bacteria exhibit rapid, dispersive bursts of movement over surfaces using transient confluent hydration from the environment, which we term "surface hydrodispersion" where cells traverse thousands of cell lengths within minutes. The fraction of the population disseminated by surface hydrodispersion is small-on order of 1 cell per million. Thus, surface hydrodispersion can promote isolated distribution of single cells, which is unlike other characterized active and passive surface motilities. We describe this translocation using a continuous time random walk modeling approach and find in computational simulations that transient fluid accumulation, dilution, and gravitational pull are the contributing factors. Surface hydrodispersion, consistent with advection, is unlike simple colony expansion as it dramatically alters spatial relationships, shown here with Staphylococcus aureus, which becomes increasingly virulent when isolated from Corynebacterium striatum Surface hydrodispersion of non-motile bacteria exploiting transient fluid availability and gravity is a mechanism that can result in sporadic and sudden shifts in microbial community behavior. To better understand how this movement can impact biogeography on the millimeter scale, this work describes a system for study of primary factors behind this movement as well as a stochastic model describing this dispersal.Importance: Understanding the dynamics within microbiome communities is a challenge. Knowledge of phylogeny and spatial arrangement has led to increased understanding of numerous polymicrobial communities yet, these snapshots do not convey the dynamics of populations over time. The actual biogeography of any microbiome controls the potential interactions, governing any possible antagonistic or synergistic behavior. Accordingly, a shift in biogeography can enable new behavior. Little is known about the movement mechanisms of "non-motile" microbes. Here we characterize a universal means of movement we term hydrodispersion where non-motile bacteria are transported thousands of cell lengths in minutes. We show that only a small fraction of the population is translocated by hydrodispersion and describe this movement further using a random-walk mathematical model approach in silico We demonstrate the importance of hydrodispersion by showing that Staphylococcus aureus can separate from a coculture inoculation with Corynebacterium striatum thus permitting transition to a more virulent state.

6.
Analyst ; 147(1): 22-34, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34874024

RESUMEN

Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.


Asunto(s)
Bacterias , Reuniones Masivas , Bacterias/genética , Humanos
7.
Analyst ; 146(4): 1346-1354, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33393560

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.


Asunto(s)
Nanoporos , Pseudomonas aeruginosa , Electrodos , Oxidación-Reducción , Fenazinas , Pseudomonas aeruginosa/metabolismo , Piocianina
8.
J Chem Phys ; 154(20): 204201, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34241187

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data. AQs are important to quorum sensing (QS), virulence, and other actions of P. aeruginosa. Three-dimensional distributions of three different AQs (PQS, HQNO, and HHQ) were observed to have a significant depth, suggesting 3D anisotropic shapes-sheet-like rectangular solids for HQNO and extended cylinders for PQS. Similar to observations from 2D imaging studies, spectral features characteristic of AQs (HQNO or PQS) and the amide I vibration from peptide-containing species were found to correlate with the PQS cylinders typically located at the tips of the HQNO rectangular solids. In the QS-deficient mutant lasIrhlI, a small globular component was observed, whose highly localized nature and similarity in size to a P. aeruginosa cell suggest that the feature arises from HHQ localized in the vicinity of the cell from which it was secreted. The difference in the shapes and sizes of the aggregates of the three AQs in wild-type and mutant P. aeruginosa is likely related to the difference in the cellular response to growth conditions, environmental stress, metabolic levels, or other structural and biochemical variations inside biofilms. This study provides a new route to characterizing the 3D structure of biofilms and shows the potential of confocal Raman imaging to elucidate the nature of heterogeneous biofilms in all three spatial dimensions. These capabilities should be applicable as a tool in studies of infectious diseases.


Asunto(s)
Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Quinolonas/farmacología , Biopelículas/crecimiento & desarrollo , Microscopía Confocal , Quinolonas/química , Espectrometría Raman
9.
J Bacteriol ; 201(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31308071

RESUMEN

Pseudomonas aeruginosa is among the many bacteria that swarm, where groups of cells coordinate to move over surfaces. It has been challenging to determine the behavior of single cells within these high-cell-density swarms. To track individual cells within P. aeruginosa swarms, we imaged a fluorescently labeled subset of the larger population. Single cells at the advancing swarm edge varied in their motility dynamics as a function of time. From these data, we delineated four phases of early swarming prior to the formation of the tendril fractals characteristic of P. aeruginosa swarming by collectively considering both micro- and macroscale data. We determined that the period of greatest single-cell motility does not coincide with the period of greatest collective swarm expansion. We also noted that flagellar, rhamnolipid, and type IV pilus motility mutants exhibit substantially less single-cell motility than the wild type.IMPORTANCE Numerous bacteria exhibit coordinated swarming motion over surfaces. It is often challenging to assess the behavior of single cells within swarming communities due to the limitations of identifying, tracking, and analyzing the traits of swarming cells over time. Here, we show that the behavior of Pseudomonas aeruginosa swarming cells can vary substantially in the earliest phases of swarming. This is important to establish that dynamic behaviors should not be assumed to be constant over long periods when predicting and simulating the actions of swarming bacteria.


Asunto(s)
Mutación , Pseudomonas aeruginosa/fisiología , Análisis de la Célula Individual/métodos , Rastreo Celular , Fimbrias Bacterianas/genética , Flagelos/genética , Fluorescencia , Glucolípidos/genética , Microscopía Fluorescente , Movimiento , Pseudomonas aeruginosa/genética
10.
J Biol Chem ; 293(24): 9544-9552, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29588364

RESUMEN

There is a general lack of understanding about how communities of bacteria respond to exogenous toxins such as antibiotics. Most of our understanding of community-level stress responses comes from the study of stationary biofilm communities. Although several community behaviors and production of specific biomolecules affecting biofilm development and associated behavior have been described for Pseudomonas aeruginosa and other bacteria, we have little appreciation for the production and dispersal of secreted metabolites within the 2D and 3D spaces they occupy as they colonize, spread, and grow on surfaces. Here we specifically studied the phenotypic responses and spatial variability of alkyl quinolones, including the Pseudomonas quinolone signal (PQS) and members of the alkyl hydroxyquinoline (AQNO) subclass, in P. aeruginosa plate-assay swarming communities. We found that PQS production was not a universal signaling response to antibiotics, as tobramycin elicited an alkyl quinolone response, whereas carbenicillin did not. We also found that PQS and AQNO profiles in response to tobramycin were markedly distinct and influenced these swarms on different spatial scales. At some tobramycin exposures, P. aeruginosa swarms produced alkyl quinolones in the range of 150 µm PQS and 400 µm AQNO that accumulated as aggregates. Our collective findings show that the distribution of alkyl quinolones can vary by several orders of magnitude within the same swarming community. More notably, our results suggest that multiple intercellular signals acting on different spatial scales can be triggered by one common cue.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Hidroxiquinolinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Quinolonas/metabolismo , Tobramicina/farmacología , Humanos , Espectrometría de Masas , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/fisiología , Espectrometría Raman
11.
Langmuir ; 35(21): 7043-7049, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31042392

RESUMEN

Pyocyanin (PYO) is one of many toxins secreted by the opportunistic human pathogenic bacterium Pseudomonas aeruginosa. Direct detection of PYO in biofilms is crucial because PYO can provide important information about infection-related virulence mechanisms in P. aeruginosa. Because PYO is both redox-active and Raman-active, we seek to simultaneously acquire both spectroscopic and redox state information about PYO. The combination of surface-enhanced Raman spectroscopy (SERS) and voltammetry is used here to provide insights into the molecular redox behavior of PYO while controlling the SERS and electrochemical (EC) response of PYO with external stimuli, such as pH and applied potential. Furthermore, PYO secretion from biofilms of different P. aeruginosa strains is compared. Both SERS spectra and EC behavior are observed to change with pH, and several pH-dependent bands are identified in the SERS spectra, which can potentially be used to probe the local environment. Comparison of the voltammetric behavior of wild-type and a PYO-deficient mutant unequivocally identifies PYO as a major component of the secretome. Spectroelectrochemical studies of the PYO standard reveal decreasing SERS intensities of PYO bands under reducing conditions. Extending these experiments to pellicle biofilms shows similar behavior with applied potential, and SERS imaging indicates that secreted PYO is localized in regions approximately the size of P. aeruginosa cells. The in situ spectroelectrochemical biofilm characterization approach developed here suggests that EC-SERS monitoring of secreted molecules can be used diagnostically and correlated with the progress of infection.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa/fisiología , Piocianina/química , Pseudomonas aeruginosa/química , Piocianina/metabolismo , Espectrometría Raman
12.
J Bacteriol ; 200(11): e000950-18, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483166

RESUMEN

The 24th Annual Midwest Microbial Pathogenesis Conference (MMPC) was held at the University of Notre Dame from August 25-27, 2017. The conference provided an opportunity for scientists from the Midwest to discuss new advances in microbial pathogenesis, including how pathogens promote disease, and how they interact with each other, the microbiome and the host. This commentary highlights the MMPC history, the topics presented at the conference and the reports in this issue.

13.
J Bacteriol ; 200(11): e00014-18, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555698

RESUMEN

The degree to which surface motile bacteria explore their surroundings is influenced by aspects of their local environment. Accordingly, regulation of surface motility is controlled by numerous chemical, physical, and biological stimuli. Discernment of such regulation due to these multiple cues is a formidable challenge. Additionally inherent ambiguity and variability from the assays used to assess surface motility can be an obstacle to clear delineation of regulated surface motility behavior. Numerous studies have reported single environmental determinants of microbial motility and lifestyle behavior but the translation of these data to understand surface motility and bacterial colonization of human host or environmental surfaces is unclear. Here, we describe the current state of the field and our understanding of exogenous factors that influence bacterial surface motility.

14.
Anal Chem ; 90(9): 5654-5663, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29623707

RESUMEN

After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.


Asunto(s)
Agar/química , Imagen Molecular , Pseudomonas aeruginosa/química , Quinolinas/análisis , Espectrometría de Masa de Ion Secundario , Biopelículas , Microbiota , Microscopía Confocal , Microscopía Fluorescente , Tamaño de la Partícula
15.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29427430

RESUMEN

Pseudomonas aeruginosa exhibits flagellum-mediated swimming in liquid and swarming on hydrated surfaces under diverse nutrient conditions. Prior studies have implicated a phosphodiesterase, DipA, in regulating these flagellum-mediated motilities, but collectively, the necessity for DipA was unclear. In this study, we find that the medium composition conditionally constrains the influence of DipA on flagellar motility. We show that DipA exhibits more influence on minimal medium supplemented with glutamate or glucose, where flagellar motility was negated for the dipA mutant. Conversely, a dipA-deficient mutant exhibits flagellar motility when growing with LB Lennox broth and minimal medium supplemented with Casamino Acids. Swarming under these rich medium conditions occurs under elevated levels of c-di-GMP. We also demonstrate that the influence of DipA upon swimming often differs from that upon swarming, and we conclude that a direct comparison of the motility phenotypes is generally valid only when characterizing motility assay results from the same medium composition. Our results are consistent with the explanation that DipA is one of several phosphodiesterases responding to the nutrient environment sensed by P. aeruginosa On minimal medium with glutamate or glucose, DipA is dominant; however, on rich medium, the necessity of DipA is fully negated.IMPORTANCE Motile and ubiquitous bacteria such as Pseudomonas aeruginosa can quickly colonize surfaces and form biofilms in numerous environments such as water distribution systems, soil, and the human lung. To effectively disrupt bacterial colonization, it is imperative to understand how bacteria regulate motility in these different growth environments. Here, we show that the phosphodiesterase DipA is not required for flagellar motility under all nutrient conditions. Thus, the maintenance of intracellular c-di-GMP levels to promote flagellar motility or biofilm development must be conditionally regulated by differing phosphodiesterases in variation with select nutrient cues.


Asunto(s)
Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/fisiología , Hidrolasas Diéster Fosfóricas/genética , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/administración & dosificación , Hidrolasas Diéster Fosfóricas/metabolismo , Pseudomonas aeruginosa/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(50): 18013-8, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468980

RESUMEN

Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.


Asunto(s)
Adhesión Bacteriana/fisiología , Fimbrias Bacterianas/metabolismo , Interacciones Microbianas/fisiología , Modelos Biológicos , Movimiento/fisiología , Pseudomonas aeruginosa/fisiología , Biopelículas/crecimiento & desarrollo , Biología Computacional/métodos , Simulación por Computador , Flagelos/fisiología , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Microscopía Confocal , Pseudomonas aeruginosa/metabolismo , Proteína Fluorescente Roja
17.
Analyst ; 140(19): 6544-52, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26331158

RESUMEN

Two label-free molecular imaging techniques, confocal Raman microscopy (CRM) and secondary ion mass spectrometry (SIMS), are combined for in situ characterization of the spatiotemporal distributions of quinolone metabolites and signaling molecules in communities of the pathogenic bacterium Pseudomonas aeruginosa. Dramatic molecular differences are observed between planktonic and biofilm modes of growth for these bacteria. We observe patterned aggregation and a high abundance of N-oxide quinolines in early biofilms and swarm zones of P. aeruginosa, while the concentrations of these secreted components in planktonic cells and agar plate colonies are below CRM and SIMS detection limits. CRM, in conjunction with principal component analysis (PCA) is used to distinguish between the two co-localized isomeric analyte pairs 4-hydroxy-2-heptylquinoline-N-oxide (HQNO)/2-heptyl-3-hydroxyquinolone (PQS) and 4-hydroxy-2-nonylquinoline-N-oxide (NQNO)/2-nonyl-hydroxyquinolone (C9-PQS) based on differences in their vibrational fingerprints, illustrating how the technique can be used to guide tandem-MS and tandem-MS imaging analysis. Because N-oxide quinolines are ubiquitous and expressed early in biofilms, these analytes may be fundamentally important for early biofilm formation and the growth and organization of P. aeruginosa microbial communities. This study underscores the advantages of using multimodal molecular imaging to study complex biological systems.


Asunto(s)
Microscopía Confocal/métodos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Biopelículas , Isomerismo , Pseudomonas aeruginosa/fisiología , Quinolonas/química
18.
J Bacteriol ; 196(2): 504-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24244000

RESUMEN

We recently demonstrated that Pseudomonas aeruginosa PAO1 undergoes a pronounced phenotypic change when introduced into the intestines of rats during surgical injury. Recovered strains displayed a specific phenotype (termed the P2 phenotype) characterized by altered pyocyanin production, high collagenase activity, high swarming motility, low resistance to chloramphenicol, and increased killing of Caenorhabditis elegans compared to the inoculating strain (termed the P1 phenotype). The aims of this study were to characterize the differences between the P. aeruginosa P1 and P2 phenotypes in quorum sensing and competitiveness. We then determined the presence of the P2 phenotype among PAO1 strains from various laboratories. Results demonstrated that P2 cells display accelerated growth during early exponential phase and early activation of quorum-sensing systems and overcome the growth of P1 cells in a mixed population. Among eight PAO1 strains obtained from different laboratories, four exhibited the P2 phenotype. Of 27 mutants analyzed from the P. aeruginosa MPAO1 transposon library, 25 displayed P2 phenotypes. The P2 phenotype in both cases correlated with a lack of expression of mexE or mexF due to mutations in mexT and mexF genes. In summary, strains possessing the P2 phenotype are distributed among PAO1 strains commonly used across a variety of research laboratories. Genetically, they are characterized by various mutations in mexT or mexF.


Asunto(s)
Mutación , Pseudomonas aeruginosa/genética , Animales , Caenorhabditis elegans/microbiología , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Fenotipo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología , Percepción de Quorum , Ratas , Análisis de Supervivencia
19.
J Bacteriol ; 196(22): 3853-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25157084

RESUMEN

Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus "S motility." The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division.


Asunto(s)
División Celular/fisiología , Polaridad Celular/fisiología , Myxococcus xanthus/citología , Myxococcus xanthus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Movimiento
20.
Anal Chem ; 86(21): 10885-91, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25268906

RESUMEN

Secondary ion mass spectrometry (SIMS) and confocal Raman microscopy (CRM) are combined to analyze the chemical composition of cultured Pseudomonas aeruginosa biofilms, providing complementary chemical information for multiple analytes within the sample. Precise spatial correlation between SIMS and CRM images is achieved by applying a chemical microdroplet array to the sample surface which is used to navigate the sample, relocate regions of interest, and align image data. CRM is then employed to nondestructively detect broad molecular constituent classes-including proteins, carbohydrates, and, for the first time, quinolone signaling molecules-in Pseudomonas-derived biofilms. Subsequent SIMS imaging at the same location detects quinolone distributions in excellent agreement with the CRM, discerns multiple quinolone species which differ slightly in mass, resolves subtle differences in their distributions, and resolves ambiguous compound assignments from CRM by determining specific molecular identities via in situ tandem MS.


Asunto(s)
Biopelículas , Microscopía Confocal/métodos , Pseudomonas aeruginosa/química , Espectrometría de Masa de Ion Secundario/métodos , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA