Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(1): 458-472, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34904664

RESUMEN

An embryo starts its life with maternal mRNA clearance, which is crucial for embryonic development. The elimination of maternal transcripts occurs by the joint action of two pathways: the maternally encoded mRNA decay pathway (M-decay) and the zygotic genome activation (ZGA)-dependent pathway (Z-decay). However, zygotic factors triggering maternal mRNA decay in early mammalian embryos remain largely unknown. In this study, we identified the zygotically encoded nuclear poly(A) binding protein 1 (PABPN1) as a factor required for maternal mRNA turnover, with a previously undescribed cytoplasmic function. Cytoplasmic PABPN1 docks on 3'-uridylated transcripts, downstream of terminal uridylyl transferases TUT4 and TUT7, and recruits 3'-5' exoribonuclease DIS3L2 to its targets, facilitating maternal mRNA decay. Pabpn1-knockout in mice resulted in preimplantation stage mortality due to early developmental arrest at the morula stage. Maternal mRNAs to be eliminated via the Z-decay pathway failed to be removed from Pabpn1-depleted embryos. Furthermore, PABPN1-mediated Z-decay is essential for major ZGA and regulates the expression of cell fate-determining factors in mouse preimplantation embryos. This study revealed an unforeseen cytoplasmic function of PABPN1 coupled with early embryonic development, characterized the presence of a zygotic destabilizer of maternal mRNA, and elucidated the Z-decay process mechanisms, which potentially contribute to human fertility.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína I de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Cigoto/metabolismo , Animales , Embrión de Mamíferos , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos , Estabilidad del ARN
2.
EMBO Rep ; 21(8): e49956, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32558204

RESUMEN

Maternal mRNA degradation is a critical event of the maternal-to-zygotic transition (MZT) that determines the developmental potential of early embryos. Nuclear Poly(A)-binding proteins (PABPNs) are extensively involved in mRNA post-transcriptional regulation, but their function in the MZT has not been investigated. In this study, we find that the maternally expressed PABPN1-like (PABPN1L), rather than its ubiquitously expressed homolog PABPN1, acts as an mRNA-binding adapter of the mammalian MZT licensing factor BTG4, which mediates maternal mRNA clearance. Female Pabpn1l null mice produce morphologically normal oocytes but are infertile owing to early developmental arrest of the resultant embryos at the 1- to 2-cell stage. Deletion of Pabpn1l impairs the deadenylation and degradation of a subset of BTG4-targeted maternal mRNAs during the MZT. In addition to recruiting BTG4 to the mRNA 3'-poly(A) tails, PABPN1L is also required for BTG4 protein accumulation in maturing oocytes by protecting BTG4 from SCF-ßTrCP1 E3 ubiquitin ligase-mediated polyubiquitination and degradation. This study highlights a noncanonical cytoplasmic function of nuclear poly(A)-binding protein in mRNA turnover, as well as its physiological importance during the MZT.


Asunto(s)
ARN Mensajero Almacenado , Cigoto , Animales , Proteínas de Ciclo Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Oocitos , Estabilidad del ARN
3.
Acta Pharmacol Sin ; 43(4): 919-932, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34262136

RESUMEN

Diosmetin (3',5,7 -trihydroxy-4'-methoxy flavone) is a natural flavonoid compound in the citrus species, it exhibits a variety of pharmacological activities, but little is known of its effects on colitis. In this study we evaluated the therapeutic effects of diosmetin on mouse models of chronic and acute colitis. Chronic colitis was induced in mice by drinking water containing 3% dextran sulfate sodium (DSS) from D0 to D8, followed by administration of diosmetin (25, 50 mg · kg-1 · d-1) for another 8 days. Acute colitis was induced by drinking water containing 5% DSS from D0 to D7, the mice concomitantly received diosmetin (25, 50 mg · kg-1 · d-1) from D1 to D7. During the experiments, body weight and disease activity index (DAI) were assessed daily. After the mice were sacrificed, colon tissue and feces samples were collected, and colon length was measured. We showed that in both models, diosmetin administration significantly decreased DAI score and ameliorated microscopic colon tissue damage; increased the expression of tight junction proteins (occludin, claudin-1, and zonula occludens-1), and reduced the secretion of proinflammatory cytokines IL-1ß, IL-6, TNF-α, and Cox-2 in colon tissue. We found that diosmetin administration remarkably inhibited colon oxidative damage by adjusting the levels of intracellular and mitochondrial reactive oxygen species, GSH-Px, SOD, MDA and GSH in colon tissue. The protection of diosmetin against intestinal epithelial barrier damage and oxidative stress were also observed in LPS-treated Caco-2 and IEC-6 cells in vitro. Furthermore, we demonstrated that diosmetin markedly increased the expression of Nrf2 and HO-1 and reduced the ratio of acetylated NF-κB and NF-κB by activating the circ-Sirt1/Sirt1 axis, which inhibited oxidative stress and inflammation in vivo and in vitro. Diosmetin reversed the effects of si-circSirt1 and si-Sirt1 in LPS-treated Caco-2 and IEC-6 cells. When the gut microbiota was analyzed in the mouse model of colitis, we found that diosmetin administration modulated the abundance of Bacteroidetes, Actinobacteria, Cyanobacteria and Firmicutes, which were crucial for inflammatory bowel disease. Our results have linked colitis to the circ-Sirt1/Sirt1 signaling pathway, which is activated by diosmetin. The results imply that diosmetin may be a novel candidate to alleviate DSS-induced colitis and can be a lead compound for future optimization and modification.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Flavonoides/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Sirtuina 1/metabolismo
4.
Sheng Li Xue Bao ; 74(4): 555-562, 2022 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-35993207

RESUMEN

This study aimed to investigate the effects of hypoxia on RhoA/Rho-kinase (ROCK) signaling pathway and autophagy in pulmonary artery smooth muscle cells (PASMCs), and to explore the underlying mechanism of Umbelliferone (Umb) in ameliorating chronic hypoxic pulmonary hypertension. PASMCs were cultured from Sprague-Dawley (SD) rats and randomly divided into control group, hypoxia group, hypoxia + Umb intervention group and normoxia + Umb intervention group. Alpha smooth muscle actin (α-SMA) and LC3 were assessed by immunofluorescence staining. Protein expression of RhoA, ROCK2, p-MYPT1, LC3-II, Beclin-1, p62, C-Caspase 3, Bax and Bcl-2 was analyzed by Western blotting. In in vivo study, SD rats were divided into control group, hypoxia group and hypoxia + Umb intervention group. Weight ratio of the right ventricle (RV)/left ventricle plus septum (LV+S) was detected, and pulmonary arterial morphological features were examined by HE staining. The results indicated that compared with the control group, the LC3-II/LC3-I ratio and expression of Beclin-1 were significantly increased, while p62 expression was significantly decreased, and the expressions of RhoA, ROCK2 and p-MYPT1 were significantly increased in PASMCs of hypoxia group (P < 0.05). The changes of LC3-II/LC3-I ratio, the expressions of Beclin-1, p62, RhoA, ROCK2 and p-MYPT1 in PASMCs were reversed by Umb treatment (P < 0.05). Consistently, the pulmonary arterial wall was thickened and the RV/(LV+S) ratio was increased in hypoxic rats, which were significantly improved by Umb treatment (P < 0.05). These results suggest that Umb can improve hypoxia-induced pulmonary hypertension by inhibiting the RhoA/ROCK signaling pathway and autophagy in PASMCs.


Asunto(s)
Hipertensión Pulmonar , Animales , Autofagia , Beclina-1/metabolismo , Beclina-1/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Umbeliferonas/metabolismo , Umbeliferonas/farmacología , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/farmacología
5.
Cell Mol Life Sci ; 77(11): 2181-2197, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31492966

RESUMEN

Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.


Asunto(s)
Meiosis , Oocitos/citología , Fosfohidrolasa PTEN/metabolismo , Proteínas de Unión al ARN/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Células HeLa , Humanos , Ratones , Oocitos/metabolismo , Oocitos/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolisis , Transducción de Señal
6.
Antonie Van Leeuwenhoek ; 113(3): 447, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31916135

RESUMEN

In the original publication of the article, the deposit accession numbers of strain 15181T in the acknowledgment section were incorrectly provided as "KCTC 62172T and MCCC 1K03442T".

7.
Molecules ; 25(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963465

RESUMEN

Hf(OTf)4 was identified as a highly potent catalyst (0.1-0.5 mol%) for three-component Mannich reaction under solvent-free conditions. Hf(OTf)4-catalyzed Mannich reaction exhibited excellent regioselectivity and diastereoselectivity when alkyl ketones were employed as substrates. 1H NMR tracing of the H/D exchange reaction of ketones in MeOH-d4 indicated that Hf(OTf)4 could significantly promote the keto-enol tautomerization, thereby contributing to the acceleration of reaction rate.


Asunto(s)
Hafnio/química , Cetonas/química , Mesilatos/química , Catálisis , Bases de Mannich/química , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Solventes
8.
Biotechnol Bioeng ; 116(4): 805-815, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30537067

RESUMEN

Halomonas has been developed as a platform for the next generation industrial biotechnology allowing open and nonsterile growth without microbial contamination under a high-salt concentration and alkali pH. To reduce downstream cost associated with continuous centrifugation and salt containing wastewater treatment, Halomonas campaniensis strain LS21 was engineered to become self-flocculating by knocking out an etf operon encoding two subunits of an electron transferring flavoprotein in the predicted electron transfer chain. Self-flocculation could be attributed to the decrease of the surface charge and increase of the cellular hydrophobicity resulted from deleted etf. A wastewaterless fermentation strategy based on the self-flocculating H. campaniensis was developed for growth and the production of poly-3-hydroxybutyrate (PHB) as an example. Most microbial cells flocculated and precipitated to the bottom of the bioreactor within 1 min after stopping the aeration and agitation. The supernatant can be used again without sterilization or inoculation for the growth of the next batch after collecting the precipitated cell mass. The wastewaterless process was conducted for four runs without generating wastewater. PHB accumulation by the self-flocculent strain was enhanced via promoter and ribosome binding site optimizations, the productivities of cell dry weight and PHB were increased from 0.45 and 0.18 g·L -1 ·hr -1 for the batch process compared to 0.82 and 0.33 g·L -1 ·hr -1 for the wastewaterless continuous process, respectively. This has clearly demonstrated the advantages of the wastewaterless process in that it not only reduces wastewater but also increases cell growth and product formation efficiency in a given period of time.


Asunto(s)
Fermentación , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Aguas Residuales/microbiología , Reactores Biológicos/microbiología , Ingeniería Celular/métodos , Floculación , Halomonas/genética , Halomonas/crecimiento & desarrollo , Microbiología Industrial/métodos , Aguas Residuales/análisis , Purificación del Agua/métodos
9.
Antonie Van Leeuwenhoek ; 112(6): 847-855, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30569387

RESUMEN

A Gram-stain negative, non-motile, strictly aerobic and rod-shaped bacterium, designated as 15181T, was isolated from a salt lake in Xinjiang Province, China. Strain 15181T was able to grow at 10-40 °C (optimum 37 °C), pH 6.0-8.5 (optimum 7.0) and with 1-14% NaCl (optimum 4%, w/v). According to phylogenetic analysis based on 16S rRNA gene sequences, strain 15181T was assigned to the genus Wenzhouxiangella with high 16S rRNA gene sequence similarity of 97.4% to Wenzhouxiangella sediminis XDB06T, followed by Wenzhouxiangella marina KCTC 42284T (95.9%). Strain 15181T exhibited ANI values of 80.0% and 72.0% to W. sediminis XDB06T and W. marina KCTC 42284T, respectively. The in silico DDH analysis revealed that strain 15181T shared 19.1% and 18.7% DNA relatedness with W. sediminis XDB06T and W. marina KCTC 42284T, respectively. Chemotaxonomic analysis showed that the sole respiratory quinone was ubiquinone-8, the major fatty acids included iso-C15:0, iso-C16:0 and summed feature 9 (C16:0 10-methyl and/or iso-C17:1ω9c). The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified glycolipids, two unidentified phospholipids, two unidentified aminophospholipids and an unidentified lipid. On the basis of phenotypic, genotypic and chemotaxonomic characteristics presented in this study, strain 15181T is concluded to represent a novel species in the genus Wenzhouxiangella, for which the name Wenzhouxiangella salilacus sp. nov. is proposed. The type strain is 15181T (=KCTC 62172T=MCCC 1K03442T).


Asunto(s)
Gammaproteobacteria/aislamiento & purificación , Lagos/microbiología , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Lagos/análisis , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo
10.
Molecules ; 24(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781738

RESUMEN

A P(V)-N activation method based on nucleoside phosphoropiperidate/DCI system has been developed for improved synthesis of diverse UDP-furanoses. The reaction conditions including temperature, amount of activator, and reaction time were optimized to alleviate the degradation of UDP-furanoses to cyclic phosphates. In addition, an efficient and facile phosphoramidite route was employed for the preparation of furanosyl-1-phosphates.


Asunto(s)
Arabinosa/análogos & derivados , Imidazoles/química , Iminofuranosas/síntesis química , Arabinosa/síntesis química , Arabinosa/química , Iminofuranosas/química , Nucleósidos/química , Fosfatos/química , Piperidinas/química , Uridina/química
11.
Molecules ; 24(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669606

RESUMEN

In our studies on the catalytic activity of Group IVB transition metal Lewis acids, Hf(OTf)4 was identified as a highly potent catalyst for "one-pot, three-component" Biginelli reaction. More importantly, it was found that solvent-free conditions, in contrast to solvent-based conditions, could dramatically promote the Hf(OTf)4-catalyzed formation of 3,4-dihydro-pyrimidin-2-(1H)-ones. To provide a mechanistic explanation, we closely examined the catalytic effects of Hf(OTf)4 on all three potential reaction pathways in both "sequential bimolecular condensations" and "one-pot, three-component" manners. The experimental results showed that the synergistic effects of solvent-free conditions and Hf(OTf)4 catalysis not only drastically accelerate Biginelli reaction by enhancing the imine route and activating the enamine route but also avoid the formation of Knoevenagel adduct, which may lead to an undesired byproduct. In addition, ¹H-MMR tracing of the H-D exchange reaction of methyl acetoacetate in MeOH-d4 indicated that Hf(IV) cation may significantly accelerate ketone-enol tautomerization and activate the ß-ketone moiety, thereby contributing to the overall reaction rate.


Asunto(s)
Hafnio/química , Ácidos de Lewis/química , Metales/química , Pirimidinonas/síntesis química , Solventes/química , Catálisis , Técnicas de Química Sintética , Estructura Molecular , Pirimidinonas/química
12.
Metab Eng ; 49: 275-286, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30219528

RESUMEN

Halomonas bluephagenesis has been developed as a platform strain for the next generation industrial biotechnology (NGIB) with advantages of resistances to microbial contamination and high cell density growth (HCD), especially for production of polyhydroxyalkanoates (PHA) including poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). However, little is known about the mechanism behind PHA accumulation under oxygen limitation. This study for the first time found that H. bluephagenesis utilizes NADH instead of NADPH as a cofactor for PHB production, thus revealing the rare situation of enhanced PHA accumulation under oxygen limitation. To increase NADH/NAD+ ratio for enhanced PHA accumulation under oxygen limitation, an electron transport pathway containing electron transfer flavoprotein subunits α and ß encoded by etf operon was blocked to increase NADH supply, leading to 90% PHB accumulation in the cell dry weight (CDW) of H. bluephagenesis compared with 84% by the wild type. Acetic acid, a cost-effective carbon source, was used together with glucose to balance the redox state and reduce inhibition on pyruvate metabolism, resulting in 22% more CDW and 94% PHB accumulation. The cellular redox state changes induced by the addition of acetic acid increased 3HV ratio in its copolymer PHBV from 4% to 8%, 4HB in its copolymer P34HB from 8% to 12%, respectively, by engineered H. bluephagenesis. The strategy of systematically modulation on the redox potential of H. bluephagenesis led to enhanced PHA accumulation and controllable monomer ratios in PHA copolymers under oxygen limitation, reducing energy consumption and scale-up complexity.


Asunto(s)
Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Ingeniería Metabólica , NAD/metabolismo , Poliésteres/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Halomonas/genética , NAD/genética , Oxígeno/metabolismo
13.
Int J Syst Evol Microbiol ; 68(5): 1743-1748, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29620500

RESUMEN

A novel Gram-stain-negative, translucent-white, aerobic, motile and rod-shaped strain, designated N18T, was isolated from a coastal sediment sample collected in Zhoushan, Zhejiang Province, China. 16S rRNA gene similarity analysis revealed that strain N18T demonstrated highest similarity to the genus Kordiimonas(95.3-97.2 %). Phylogenetic analysis of 16S rRNA gene sequence showed that strain N18T represented a distinct lineage in the clade consisting of the genus Kordiimonas. Strain N18T was found to grow at 10-37 °C (optimum 28 °C), pH 6.0-8.0 (optimum 7.0) and with 1.0-4.0 % (w/v) NaCl (optimum 2.5 %). The G+C content of the genomic DNA was 55.3 mol%. The major cellular fatty acids were identified as summed feature 3 (comprising iso-C15 : 0 2-OH/C16 : 1ω7c), iso-C17 : 1ω9c and iso-C15 : 0. The polar lipid profile of N18T consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified glycolipid, an unidentified aminoglycolipid, an unidentified aminophospholipid and five unidentified lipids. The respiratory quinone was Q-10. Based on chemotaxonomic, morphological and physiological properties, strain N18T could be distinguished from its closest phylogenetic neighbours. Thus, we propose Kordiimonas pumila sp. nov., the type strain is N18T (=MCCC 1K03436T=KCTC 62164T).


Asunto(s)
Alphaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
14.
Int J Syst Evol Microbiol ; 68(6): 1949-1954, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29676726

RESUMEN

A Gram-stain-negative, non-motile, aerobic, rod-shaped bacterium, designated 15182T, was isolated from a saline lake in China. The novel strain 15182T was able to grow at 10-40 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, 7.5) and with 0.5-4 % NaCl (optimum, 2-3 %, w/v). The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 15182T was most closely related to the genus Rhodohalobacter by sharing the highest sequence similarity of 97.0 % with Rhodohalobacter halophilus JZ3C29T. Chemotaxonomic analysis showed that the sole respiratory quinone was menaquinone 7, the major fatty acids included C16 : 0 N alcohol and C16 : 1ω11c. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four uncharacterized glycolipids, one uncharacterized phospholipid and two uncharacterized lipids. The genomic DNA G+C content of the strain 15182T was 42.4 mol%. The average nucleotide identity value between 15182T and R. halophilus JZ3C29T was 75.4 %, and the in silico DNA-DNA hybridization value of the two strains was 19.1 %. On the basis of its phenotypic, chemotaxonomic, genotypic and genomic characteristics presented in this study, strain 15182T is suggested to represent a novel species in the genus Rhodohalobacter, for which the name Rhodohalobacter barkolensis sp. nov. is proposed. The type strain is 15182T (=KCTC 62172T=MCCC 1K03442T). An emended description of the genus Rhodohalobacter is also presented.


Asunto(s)
Bacilos y Cocos Aerobios Gramnegativos/clasificación , Lagos/microbiología , Filogenia , Salinidad , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Bacilos y Cocos Aerobios Gramnegativos/genética , Bacilos y Cocos Aerobios Gramnegativos/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Antonie Van Leeuwenhoek ; 111(10): 1855-1862, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29637394

RESUMEN

A Gram-stain negative, rod-shaped, non-motile, strictly aerobic bacterium HK-28T was isolated from a mangrove sediment sample in Haikou city, Hainan Province, China. Strain HK-28T was able to grow at 10-45 °C (optimum 25-30 °C), pH 5.0-8.5 (optimum 6.0-7.0) and 0.5-12.0% (w/v) NaCl (optimum 1.0-3.0%, w/v). The major cellular fatty acids were C16:0, Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c), Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0, C12:0 3-OH and C17:1ω8c. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, two unidentified glycolipid, an unidentified glycophospholipid, an unidentified aminolipid and an unidentified lipid. The DNA G+C content was 50.2 mol%. Accoroding to 16S rRNA gene sequence similarities, strain HK-28T shared 97.1 and 96.7% sequence similarities to the validly named species Gallaecimonas xiamenensis MCCC 1A01354T and Gallaecimonas pentaromativorans MCCC 1A06435T, respectively, and shared lower sequence similarities (< 92.0%) to all other genera. Phylogenetic analysis showed strain HK-28T was clustered with G. pentaromativorans MCCC 1A06435T and G. xiamenensis MCCC 1A01354T. Strain HK-28T showed low DNA-DNA relatedness with G. xiamenensis MCCC 1A01354T (28.3 ± 1.5%) and G. pentaromativorans MCCC 1A06435T (25.2 ± 2.4%). On the basis of phenotypic, chemotaxonomic and genotypic characteristics, strain HK-28T is considered to represent a novel species in the genus Gallaecimonas, for which the name Gallaecimonas mangrovi sp. nov. is proposed. The type strain is HK-28T (= KCTC 62177T = MCCC 1K03441).


Asunto(s)
Acanthaceae/microbiología , Microbiología Ambiental , Gammaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Gammaproteobacteria/química , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Metabolómica/métodos , Tipificación Molecular , Fenotipo , Filogenia , ARN Ribosómico 16S/genética
16.
Curr Microbiol ; 75(11): 1447-1452, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30128842

RESUMEN

A Gram-stain-negative, rod-shaped, non-motile, bacterial isolate designated 3BT, was isolated from a saline lake, and subjected to a polyphasic taxonomic investigation. The phylogenetic analysis based on 16S rRNA gene sequence clearly showed an allocation to the genus Confluentibacter with similarity ranging from 95.1 to 98%. OrthoANI values between strain 3BT and related strains of Confluentibacter (< 90%) were lower than the threshold value of 95% ANI relatedness recommended for species demarcation. Strain 3BT grew at 4-35 °C and pH 6.0-8.0 (optimum, 28 °C and pH 6.5) and with 0-3% (w/v) NaCl (optimum, 0.5%). The predominant respiratory quinone was menaquinone-6 (MK-6) and the major fatty acids were iso-C15:0, iso-C15:1 G, iso-C15:0 3-OH, and iso-C17:0 3-OH. The polar lipid profile of strain 3BT comprised phosphatidylethanolamine, one unidentified aminolipid, one aminophospholipid, and three unidentified lipids (L1-3). The DNA G+C content was 33.1 mol%. On the basis of morphological, physiological, and chemotaxonomic characteristics, together with the results of phylogenetic analysis, strain 3BT is described as a novel species in genus Confluentibacter, for which the name Confluentibacter flavum sp. nov. (type strain 3BT = CGMCC115960T = KCTC52969T) is proposed.


Asunto(s)
Flavobacteriaceae/aislamiento & purificación , Lagos/microbiología , Cloruro de Sodio/análisis , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Lagos/química , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/metabolismo
17.
Int J Syst Evol Microbiol ; 67(4): 800-805, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27902240

RESUMEN

A Gram-stain-negative, aerobic, non-motile, rod-shaped, yellow-pigmented bacterial strain, XC0022T, isolated from freshwater of a limpid stream in Zhejiang, China, was studied using a polyphasic approach. The phylogenetic analysis based on 16S rRNA gene sequences clearly showed an allocation to the genus Chryseobacterium with the highest sequence similarities of 98.0 % to Chryseobacterium taeanense PHA3-4T, 97.2 % to Chryseobacterium taihuense THMBM1T, 97.1 % to Chryseobacterium rigui CJ16T and 97.1 % to Chryseobacteriumprofundimaris DY46T. 16S rRNA gene sequence similarities to all other species of the genus Chryseobacterium were below 97.0 % (92.3-96.8 %). DNA-DNA hybridization results showed that strain XC0022T was 55.3 %, 49.8 % and 31.1 % related to C. taeanense DSM 17071T, Chryseobacteriumtaichungense DSM 17453T and Chryseobacteriumgleum JCM 2410T, respectively. The quinone system was composed only of MK-6. Strain XC0022T possessed iso-C15 : 0, iso-C17 : 0 3-OH, C18 : 1ω9c and summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) as the major fatty acids. The polar lipids profile consisted of one phosphatidylethanolamine, one unidentified glycolipid, four unidentified aminolipids and two unidentified lipids. The G+C content of the genomic DNA was 29.7 mol%. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain XC0022T (=KCTC 52364T=MCCC 1K02723T) represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium lineare sp. nov. is proposed.


Asunto(s)
Chryseobacterium/clasificación , Filogenia , Ríos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , Chryseobacterium/genética , Chryseobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Int J Syst Evol Microbiol ; 67(8): 2739-2745, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28853693

RESUMEN

A novel Gram-staining-negative, oval-shaped (0.4-0.6×0.8-1.0 µm), non-motile strain without flagella, designated B7T, was isolated from deep seawater in the South China Sea. Strain B7T was able to grow at 25-40 °C (optimum 35 °C), at pH 5.5-9.0 (optimum pH 7.0) and with 0-8 % (w/v) NaCl (optimum 3 %). Chemotaxonomic analysis showed that the predominant isoprenoid quinone was Q-10 and the dominant fatty acids were C19 : 0 cyclo 8c and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c). The polar lipids of strain B7T were diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unknown aminophospholipid, one unknown glycolipid and three unknown lipids. The DNA G+C content of the genomic DNA was 65.1 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain B7T belongs to the genus Mesorhizobium with similarities ranging from 96.2 to 97.5 %. Phylogenetic analyses of housekeeping genes recA, atpD and glnII indicated that strain B7T represented a distinct evolutionary lineage with the genus Mesorhizobium. OrthoANI values between strain B7T and related strains of the genus Mesorhizobium (<80 %) were lower than the threshold value of 95 % ANI relatedness for species demarcation. Therefore, strain B7T is concluded to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium oceanicumsp. nov. is proposed. The type strain is B7T (=KCTC 42783T=MCCC 1K02305T).


Asunto(s)
Mesorhizobium/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Mesorhizobium/genética , Mesorhizobium/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
19.
Int J Syst Evol Microbiol ; 67(5): 1169-1176, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28068219

RESUMEN

A Gram-stain-negative, aerobic, non-spore-forming, non-motile, oval to rod-shaped, prosthecate bacterium, designated strain WM6T, was isolated from a seawater sample collected from the South China Sea at a depth of 150 m and subjected to a polyphasic taxonomic investigation. Cells of strain WM6T were approximately 0.5-0.6 µm in width and 0.8-1.2 µm in length, and colonies were smooth, circular, convex and whitish yellow. Strain WM6T was found to grow at 10-45 °C (optimum, 30 °C), at pH 6.5-9.0 (optimum, pH 7.5-8.5) and with 1-6 % (w/v) NaCl (optimum, 1-2 %). Chemotaxonomic analysis showed the predominant respiratory quinone and the major fatty acid of strains WM6T were ubiquinone-10 and C18 : 1ω7c, respectively. The polar lipids of strain WM6T were phosphatidylglycerol, glucuronopyranosyldiglyceride, monoglycosyldiglyceride, sulfo-quinovosyl diacylglycerol, seven unknown glycolipids and two unknown lipids. The DNA G+C content of strain WM6T was determined to be 59.8 mol% by HPLC. 16S rRNA gene sequence similarities showed that strain WM6T was related most closely to the genus Maricaulis with a similarity range from 92.3 to 93.8 %. Phylogenetic trees reconstructed with the neighbour-joining and maximum-likelihood methods using mega and maximum-likelihood methods using arb showed that strain WM6T constituted a separated branch in the family Hyphomonadaceae. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain WM6T is clearly distinct from any validly published genus. On the basis of these features, strain WM6T represents a novel species of a new genus with the name Hyphobacterium vulgare gen. nov., sp. nov. The type strain of Hyphobacterium vulgare is WM6T (=MCCC 1K03222T=KCTC 52487T).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Agua de Mar/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
20.
Appl Environ Microbiol ; 82(10): 2975-2987, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969704

RESUMEN

The members of the phylum Bacteroidetes are recognized as some of the most important specialists for the degradation of polysaccharides. However, in contrast to research on Bacteroidetes in the human gut, research on polysaccharide degradation by marine Bacteroidetes is still rare. The genus Algibacter belongs to the Flavobacteriaceae family of the Bacteroidetes, and most species in this genus are isolated from or near the habitat of algae, indicating a preference for the complex polysaccharides of algae. In this work, a novel brown-seaweed-degrading strain designated HZ22 was isolated from the surface of a brown seaweed (Laminaria japonica). On the basis of its physiological, chemotaxonomic, and genotypic characteristics, it is proposed that strain HZ22 represents a novel species in the genus Algibacter with the proposed name Algibacter alginolytica sp. nov. The genome of strain HZ22, the type strain of this species, harbors 3,371 coding sequences (CDSs) and 255 carbohydrate-active enzymes (CAZymes), including 104 glycoside hydrolases (GHs) and 18 polysaccharide lyases (PLs); this appears to be the highest proportion of CAZymes (∼7.5%) among the reported strains in the class Flavobacteria Seventeen polysaccharide utilization loci (PUL) are predicted to be specific for marine polysaccharides, especially algal polysaccharides from red, green, and brown seaweeds. In particular, PUL N is predicted to be specific for alginate. Taking these findings together with the results of assays of crude alginate lyases, we prove that strain HZ22(T) can completely degrade alginate. This work reveals that strain HZ22(T) has good potential for the degradation of algal polysaccharides and that the structure and related mechanism of PUL in strain HZ22(T) are worth further research.


Asunto(s)
Flavobacteriaceae/clasificación , Flavobacteriaceae/aislamiento & purificación , Genoma Bacteriano , Laminaria/metabolismo , Laminaria/microbiología , Polisacáridos/metabolismo , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Sitios Genéticos , Genotipo , Redes y Vías Metabólicas/genética , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA