Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 608(7923): 563-568, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859171

RESUMEN

A fundamental gap in the study of the origin of limbed vertebrates lies in understanding the morphological and functional diversity of their closest relatives. Whereas analyses of the elpistostegalians Panderichthys rhombolepis, Tiktaalik roseae and Elpistostege watsoni have revealed a sequence of changes in locomotor, feeding and respiratory structures during the transition1-9, an isolated bone, a putative humerus, has controversially hinted at a wider range in form and function than now recognized10-14. Here we report the discovery of a new elpistostegalian from the Late Devonian period of the Canadian Arctic that shows surprising disparity in the group. The specimen includes partial upper and lower jaws, pharyngeal elements, a pectoral fin and scalation. This new genus is phylogenetically proximate to T. roseae and E. watsoni but evinces notable differences from both taxa and, indeed, other described tetrapodomorphs. Lacking processes, joint orientations and muscle scars indicative of appendage-based support on a hard substrate13, its pectoral fin shows specializations for swimming that are unlike those known from other sarcopterygians. This unexpected morphological and functional diversity represents a previously hidden ecological expansion, a secondary return to open water, near the origin of limbed vertebrates.


Asunto(s)
Evolución Biológica , Peces , Fósiles , Aletas de Animales/anatomía & histología , Escamas de Animales/anatomía & histología , Animales , Regiones Árticas , Canadá , Peces/anatomía & histología , Peces/clasificación , Historia Antigua , Mandíbula/anatomía & histología , Faringe/anatomía & histología , Filogenia , Natación
2.
Proc Natl Acad Sci U S A ; 121(15): e2316106121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564638

RESUMEN

The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix. Therefore, it is unclear in what sequence and under what functional context specializations in the axial skeletons of tetrapods arose. Here, we describe the axial skeleton of the elpistostegalian Tiktaalik roseae and show that transformations to the axial column for head mobility, body support, and pelvic fin buttressing evolved in finned vertebrates prior to the origin of limbs. No atlas-axis complex is observed; however, an independent basioccipital-exoccipital complex suggests increased mobility at the occipital vertebral junction. While the construction of vertebrae in Tiktaalik is similar to early tetrapodomorphs, its ribs possess a specialized sacral domain. Sacral ribs are expanded and ventrally curved, indicating likely attachment to the expanded iliac blade of the pelvis by ligamentous connection. Thus, the origin of novel rib types preceded major alterations to trunk vertebrae, and linkage between pelvic fins and axial column preceded the origin of limbs. These data reveal an unexpected combination of post-cranial skeletal characters, informing hypotheses of body posture and movement in the closest relatives of limbed vertebrates.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Vertebrados , Huesos , Extremidad Inferior
3.
Proc Natl Acad Sci U S A ; 120(18): e2220404120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094121

RESUMEN

Blinking, the transient occlusion of the eye by one or more membranes, serves several functions including wetting, protecting, and cleaning the eye. This behavior is seen in nearly all living tetrapods and absent in other extant sarcopterygian lineages suggesting that it might have arisen during the water-to-land transition. Unfortunately, our understanding of the origin of blinking has been limited by a lack of known anatomical correlates of the behavior in the fossil record and a paucity of comparative functional studies. To understand how and why blinking originates, we leverage mudskippers (Oxudercinae), a clade of amphibious fishes that have convergently evolved blinking. Using microcomputed tomography and histology, we analyzed two mudskipper species, Periophthalmus barbarus and Periophthalmodon septemradiatus, and compared them to the fully aquatic round goby, Neogobius melanostomus. Study of gross anatomy and epithelial microstructure shows that mudskippers have not evolved novel musculature or glands to blink. Behavioral analyses show the blinks of mudskippers are functionally convergent with those of tetrapods: P. barbarus blinks more often under high-evaporation conditions to wet the eye, a blink reflex protects the eye from physical insult, and a single blink can fully clean the cornea of particulates. Thus, eye retraction in concert with a passive occlusal membrane can achieve functions associated with life on land. Osteological correlates of eye retraction are present in the earliest limbed vertebrates, suggesting blinking capability. In both mudskippers and tetrapods, therefore, the origin of this multifunctional innovation is likely explained by selection for increasingly terrestrial lifestyles.


Asunto(s)
Parpadeo , Perciformes , Animales , Microtomografía por Rayos X , Peces/anatomía & histología
4.
Proc Natl Acad Sci U S A ; 119(10): e2120150119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238632

RESUMEN

The origin and diversification of appendage types is a central question in vertebrate evolution. Understanding the genetic mechanisms that underlie fin and limb development can reveal relationships between different appendages. Here we demonstrate, using chemical genetics, a mutually agonistic interaction between Fgf and Shh genes in the developing dorsal fin of the channel catfish, Ictalurus punctatus. We also find that Fgf8 and Shh orthologs are expressed in the apical ectodermal ridge and zone of polarizing activity, respectively, in the median fins of representatives from other major vertebrate lineages. These findings demonstrate the importance of this feedback loop in median fins and offer developmental evidence for a median fin-first scenario for vertebrate paired appendage origins.


Asunto(s)
Aletas de Animales/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Ictaluridae/embriología , Animales , Tipificación del Cuerpo/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ictaluridae/anatomía & histología , Ictaluridae/metabolismo
5.
Dev Growth Differ ; 66(1): 75-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925606

RESUMEN

Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animales Modificados Genéticamente , Mamíferos , Evolución Molecular , Secuencia Conservada/genética
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526593

RESUMEN

Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, Tiktaalik roseae, was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping. Lateral sliding joints between the cheek and dermal skull roof, as well as independent mobility between the hyomandibula and palatoquadrate, enable the suspensorium of T. roseae to expand laterally in a manner similar to modern alligator gars and polypterids. This movement can expand the spiracular and opercular cavities during feeding and respiration, which would direct fluid through the feeding apparatus. Detailed analysis of the sutural morphology of T. roseae suggests that the ability to laterally expand the cheek and palate was maintained during the fish-to-tetrapod transition, implying that limited cranial kinesis was plesiomorphic to the earliest limbed vertebrates. Furthermore, recent kinematic studies of feeding in gars demonstrate that prey capture with lateral snapping can synergistically combine both biting and suction, rather than trading off one for the other. A "gar-like" stage in early tetrapod evolution might have been an important intermediate step in the evolution of terrestrial feeding systems by maintaining suction-generation capabilities while simultaneously elaborating a mechanism for biting-based prey capture.


Asunto(s)
Evolución Biológica , Cordados/fisiología , Ingestión de Alimentos , Fósiles/anatomía & histología , Cráneo/anatomía & histología , Animales , Cordados/anatomía & histología , Conducta Alimentaria , Boca/anatomía & histología
7.
Proc Natl Acad Sci U S A ; 117(6): 3034-3044, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988131

RESUMEN

Developmental novelties often underlie the evolutionary origins of key metazoan features. The anuran urostyle, which evolved nearly 200 MYA, is one such structure. It forms as the tail regresses during metamorphosis, when locomotion changes from an axial-driven mode in larvae to a limb-driven one in adult frogs. The urostyle comprises of a coccyx and a hypochord. The coccyx forms by fusion of caudal vertebrae and has evolved repeatedly across vertebrates. However, the contribution of an ossifying hypochord to the coccyx in anurans is unique among vertebrates and remains a developmental enigma. Here, we focus on the developmental changes that lead to the anuran urostyle, with an emphasis on understanding the ossifying hypochord. We find that the coccyx and hypochord have two different developmental histories: First, the development of the coccyx initiates before metamorphic climax whereas the ossifying hypochord undergoes rapid ossification and hypertrophy; second, thyroid hormone directly affects hypochord formation and appears to have a secondary effect on the coccygeal portion of the urostyle. The embryonic hypochord is known to play a significant role in the positioning of the dorsal aorta (DA), but the reason for hypochordal ossification remains obscure. Our results suggest that the ossifying hypochord plays a role in remodeling the DA in the newly forming adult body by partially occluding the DA in the tail. We propose that the ossifying hypochord-induced loss of the tail during metamorphosis has enabled the evolution of the unique anuran bauplan.


Asunto(s)
Anuros , Evolución Biológica , Cóccix , Metamorfosis Biológica/fisiología , Animales , Anuros/anatomía & histología , Anuros/embriología , Anuros/crecimiento & desarrollo , Cóccix/anatomía & histología , Cóccix/embriología , Cóccix/crecimiento & desarrollo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Notocorda/anatomía & histología , Notocorda/embriología , Notocorda/crecimiento & desarrollo
8.
Proc Natl Acad Sci U S A ; 117(3): 1612-1620, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31888998

RESUMEN

The fin-to-limb transition was marked by the origin of digits and the loss of dermal fin rays. Paleontological research into this transformation has focused on the evolution of the endoskeleton, with little attention paid to fin ray structure and function. To address this knowledge gap, we study the dermal rays of the pectoral fins of 3 key tetrapodomorph taxa-Sauripterus taylori (Rhizodontida), Eusthenopteron foordi (Tristichopteridae), and Tiktaalik roseae (Elpistostegalia)-using computed tomography. These data show several trends in the lineage leading to digited forms, including the consolidation of fin rays (e.g., reduced segmentation and branching), reduction of the fin web, and unexpectedly, the evolution of asymmetry between dorsal and ventral hemitrichia. In Eusthenopteron, dorsal rays cover the preaxial endoskeleton slightly more than ventral rays. In Tiktaalik, dorsal rays fully cover the third and fourth mesomeres, while ventral rays are restricted distal to these elements, suggesting the presence of ventralized musculature at the fin tip analogous to a fleshy "palm." Asymmetry is also observed in cross-sectional areas of dorsal and ventral rays. Eusthenopteron dorsal rays are slightly larger than ventral rays; by contrast, Tiktaalik dorsal rays can be several times larger than ventral rays, and degree of asymmetry appears to be greater at larger sizes. Analysis of extant osteichthyans suggests that cross-sectional asymmetry in the dermal rays of paired fins is plesiomorphic to crown group osteichthyans. The evolution of dermal rays in crownward stem tetrapods reflects adaptation for a fin-supported elevated posture and resistance to substrate-based loading prior to the origin of digits.


Asunto(s)
Aletas de Animales/anatomía & histología , Extremidades/anatomía & histología , Peces/anatomía & histología , Anfibios , Aletas de Animales/fisiología , Animales , Evolución Biológica , Extremidades/fisiología , Peces/fisiología , Fósiles , Paleontología , Tomografía Computarizada por Rayos X
9.
Nature ; 537(7619): 225-228, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27533041

RESUMEN

Understanding the evolutionary transformation of fish fins into tetrapod limbs is a fundamental problem in biology. The search for antecedents of tetrapod digits in fish has remained controversial because the distal skeletons of limbs and fins differ structurally, developmentally, and histologically. Moreover, comparisons of fins with limbs have been limited by a relative paucity of data on the cellular and molecular processes underlying the development of the fin skeleton. Here, we provide a functional analysis, using CRISPR/Cas9 and fate mapping, of 5' hox genes and enhancers in zebrafish that are indispensable for the development of the wrists and digits of tetrapods. We show that cells marked by the activity of an autopodial hoxa13 enhancer exclusively form elements of the fin fold, including the osteoblasts of the dermal rays. In hox13 knockout fish, we find that a marked reduction and loss of fin rays is associated with an increased number of endochondral distal radials. These discoveries reveal a cellular and genetic connection between the fin rays of fish and the digits of tetrapods and suggest that digits originated via the transition of distal cellular fates.


Asunto(s)
Aletas de Animales/embriología , Evolución Biológica , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Pez Cebra/embriología , Pez Cebra/genética , Aletas de Animales/metabolismo , Animales , Linaje de la Célula , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Familia de Multigenes/genética , Fenotipo
10.
Proc Natl Acad Sci U S A ; 115(22): E5018-E5027, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760055

RESUMEN

Barbels are important sensory organs in teleosts, reptiles, and amphibians. The majority of ∼4,000 catfish species, such as the channel catfish (Ictalurus punctatus), possess abundant whisker-like barbels. However, barbel-less catfish, such as the bottlenose catfish (Ageneiosus marmoratus), do exist. Barbeled catfish and barbel-less catfish are ideal natural models for determination of the genomic basis for barbel development. In this work, we generated and annotated the genome sequences of the bottlenose catfish, conducted comparative and subtractive analyses using genome and transcriptome datasets, and identified differentially expressed genes during barbel regeneration. Here, we report that chemokine C-C motif ligand 33 (ccl33), as a key regulator of barbel development and regeneration. It is present in barbeled fish but absent in barbel-less fish. The ccl33 genes are differentially expressed during barbel regeneration in a timing concordant with the timing of barbel regeneration. Knockout of ccl33 genes in the zebrafish (Danio rerio) resulted in various phenotypes, including complete loss of barbels, reduced barbel sizes, and curly barbels, suggesting that ccl33 is a key regulator of barbel development. Expression analysis indicated that paralogs of the ccl33 gene have both shared and specific expression patterns, most notably expressed highly in various parts of the head, such as the eye, brain, and mouth areas, supporting its role for barbel development.


Asunto(s)
Quimiocinas/metabolismo , Proteínas de Peces/metabolismo , Órganos de los Sentidos/crecimiento & desarrollo , Animales , Bagres/genética , Bagres/crecimiento & desarrollo , Bagres/metabolismo , Quimiocinas/genética , Quimiocinas/fisiología , Proteínas de Peces/genética , Proteínas de Peces/fisiología , Perfilación de la Expresión Génica , Genoma/genética , Masculino , Órganos de los Sentidos/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
11.
Proc Biol Sci ; 286(1914): 20191571, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662089

RESUMEN

Appendage patterning and evolution have been active areas of inquiry for the past two centuries. While most work has centred on the skeleton, particularly that of amniotes, the evolutionary origins and molecular underpinnings of the neuromuscular diversity of fish appendages have remained enigmatic. The fundamental pattern of segmentation in amniotes, for example, is that all muscle precursors and spinal nerves enter either the paired appendages or body wall at the same spinal level. The condition in finned vertebrates is not understood. To address this gap in knowledge, we investigated the development of muscles and nerves in unpaired and paired fins of skates and compared them to those of chain catsharks. During skate and shark embryogenesis, cell populations of muscle precursors and associated spinal nerves at the same axial level contribute to both appendages and body wall, perhaps representing an ancestral condition of gnathostome appendicular neuromuscular systems. Remarkably in skates, this neuromuscular bifurcation as well as colinear Hox expression extend posteriorly to pattern a broad paired fin domain. In addition, we identified migratory muscle precursors (MMPs), which are known to develop into paired appendage muscles with Pax3 and Lbx1 gene expression, in the dorsal fins of skates. Our results suggest that muscles of paired fins have evolved via redeployment of the genetic programme of MMPs that were already involved in dorsal fin development. Appendicular neuromuscular systems most likely have emerged as side branches of body wall neuromusculature and have been modified to adapt to distinct aquatic and terrestrial habitats.


Asunto(s)
Evolución Biológica , Extremidades , Músculos , Aletas de Animales , Animales , Evolución Molecular , Peces , Filogenia , Tiburones , Rajidae , Vertebrados
12.
Proc Natl Acad Sci U S A ; 113(36): 10115-20, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27503876

RESUMEN

The diversification of paired appendages has been a major factor in the evolutionary radiation of vertebrates. Despite its importance, an understanding of the origin of paired appendages has remained elusive. To address this problem, we focused on T-box transcription factor 5 (Tbx5), a gene indispensable for pectoral appendage initiation and development. Comparison of gene expression in jawless and jawed vertebrates reveals that the Tbx5 expression in jawed vertebrates is derived in having an expression domain that extends caudal to the heart and gills. Chromatin profiling, phylogenetic footprinting, and functional assays enabled the identification of a Tbx5 fin enhancer associated with this apomorphic pattern of expression. Comparative functional analysis of reporter constructs reveals that this enhancer activity is evolutionarily conserved among jawed vertebrates and is able to rescue the finless phenotype of tbx5a mutant zebrafish. Taking paleontological evidence of early vertebrates into account, our results suggest that the gain of apomorphic patterns of Tbx5 expression and regulation likely contributed to the morphological transition from a finless to finned condition at the base of the vertebrate lineage.


Asunto(s)
Aletas de Animales/metabolismo , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Filogenia , Proteínas de Dominio T Box/genética , Pez Cebra/genética , Aletas de Animales/anatomía & histología , Aletas de Animales/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Cromatina/química , Cromatina/metabolismo , Huella de ADN , Embrión no Mamífero , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Maxilares/anatomía & histología , Lampreas/anatomía & histología , Lampreas/clasificación , Lampreas/genética , Lampreas/crecimiento & desarrollo , Proteínas de Dominio T Box/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/clasificación , Pez Cebra/crecimiento & desarrollo
13.
Semin Cell Dev Biol ; 57: 31-39, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26783722

RESUMEN

Differential gene expression is the core of development, mediating the genetic changes necessary for determining cell identity. The regulation of gene activity by cis-acting elements (e.g., enhancers) is a crucial mechanism for determining differential gene activity by precise control of gene expression in embryonic space and time. Modifications to regulatory regions can have profound impacts on phenotype, and therefore developmental and evolutionary biologists have increasingly focused on elucidating the transcriptional control of genes that build and pattern body plans. Here, we trace the evolutionary history of transcriptional control of three loci key to vertebrate appendage development (Fgf8, Shh, and HoxD/A). Within and across these regulatory modules, we find both complex and flexible regulation in contrast with more fixed enhancers that appear unchanged over vast timescales of vertebrate evolution. The transcriptional control of vertebrate appendage development was likely already incredibly complex in the common ancestor of fish, implying that subtle changes to regulatory networks were more likely responsible for alterations in phenotype rather than the de novo addition of whole regulatory domains. Finally, we discuss the dangers of relying on inter-species transgenesis when testing enhancer function, and call for more controlled regulatory swap experiments when inferring the evolutionary history of enhancer elements.


Asunto(s)
Evolución Biológica , Extremidades/embriología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Vertebrados/genética , Animales , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica
14.
Proc Natl Acad Sci U S A ; 112(52): 15940-5, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26644578

RESUMEN

Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies.


Asunto(s)
Adaptación Fisiológica/genética , Aletas de Animales/metabolismo , Proteínas de Peces/genética , Rajidae/genética , Aletas de Animales/anatomía & histología , Aletas de Animales/embriología , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/clasificación , Factores de Crecimiento de Fibroblastos/genética , Proteínas de Peces/clasificación , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Hibridación in Situ , Filogenia , Rajidae/embriología
15.
Proc Natl Acad Sci U S A ; 112(16): 4871-6, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25901307

RESUMEN

The fossil record is a unique repository of information on major morphological transitions. Increasingly, developmental, embryological, and functional genomic approaches have also conspired to reveal evolutionary trajectory of phenotypic shifts. Here, we use the vertebrate appendage to demonstrate how these disciplines can mutually reinforce each other to facilitate the generation and testing of hypotheses of morphological evolution. We discuss classical theories on the origins of paired fins, recent data on regulatory modulations of fish fins and tetrapod limbs, and case studies exploring the mechanisms of digit loss in tetrapods. We envision an era of research in which the deep history of morphological evolution can be revealed by integrating fossils of transitional forms with direct experimentation in the laboratory via genome manipulation, thereby shedding light on the relationship between genes, developmental processes, and the evolving phenotype.


Asunto(s)
Desarrollo Embrionario , Genómica , Organogénesis/genética , Paleontología , Aletas de Animales/embriología , Animales , Evolución Biológica , Epigénesis Genética , Extremidades/embriología , Fenotipo , Factores de Tiempo , Vertebrados/embriología
16.
Proc Natl Acad Sci U S A ; 112(51): E7101-9, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26630008

RESUMEN

As one of the earliest-known mammaliaforms, Haramiyavia clemmenseni from the Rhaetic (Late Triassic) of East Greenland has held an important place in understanding the timing of the earliest radiation of the group. Reanalysis of the type specimen using high-resolution computed tomography (CT) has revealed new details, such as the presence of the dentary condyle of the mammalian jaw hinge and the postdentary trough for mandibular attachment of the middle ear-a transitional condition of the predecessors to crown Mammalia. Our tests of competing phylogenetic hypotheses with these new data show that Late Triassic haramiyids are a separate clade from multituberculate mammals and are excluded from the Mammalia. Consequently, hypotheses of a Late Triassic diversification of the Mammalia that depend on multituberculate affinities of haramiyidans are rejected. Scanning electron microscopy study of tooth-wear facets and kinematic functional simulation of occlusion with virtual 3D models from CT scans confirm that Haramiyavia had a major orthal occlusion with the tallest lingual cusp of the lower molars occluding into the lingual embrasure of the upper molars, followed by a short palinal movement along the cusp rows alternating between upper and lower molars. This movement differs from the minimal orthal but extensive palinal occlusal movement of multituberculate mammals, which previously were regarded as relatives of haramiyidans. The disparity of tooth morphology and the diversity of dental functions of haramiyids and their contemporary mammaliaforms suggest that dietary diversification is a major factor in the earliest mammaliaform evolution.


Asunto(s)
Evolución Biológica , Mamíferos/anatomía & histología , Mandíbula/anatomía & histología , Diente/anatomía & histología , Animales , Tamaño Corporal , Fósiles/anatomía & histología , Groenlandia , Historia Antigua , Mamíferos/clasificación , Modelos Dentales , Filogenia
17.
Proc Natl Acad Sci U S A ; 112(3): 803-8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25535365

RESUMEN

There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.


Asunto(s)
Peces/anatomía & histología , Animales , Elementos de Facilitación Genéticos , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Ratones
18.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404779

RESUMEN

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Asunto(s)
Curaduría de Datos/normas , Conjuntos de Datos como Asunto , Disciplinas de las Ciencias Biológicas/estadística & datos numéricos , Reproducibilidad de los Resultados , Investigación/normas
19.
Proc Natl Acad Sci U S A ; 111(3): 893-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24449831

RESUMEN

A major challenge in understanding the origin of terrestrial vertebrates has been knowledge of the pelvis and hind appendage of their closest fish relatives. The pelvic girdle and appendage of tetrapods is dramatically larger and more robust than that of fish and contains a number of structures that provide greater musculoskeletal support for posture and locomotion. The discovery of pelvic material of the finned elpistostegalian, Tiktaalik roseae, bridges some of these differences. Multiple isolated pelves have been recovered, each of which has been prepared in three dimensions. Likewise, a complete pelvis and partial pelvic fin have been recovered in association with the type specimen. The pelves of Tiktaalik are paired and have broad iliac processes, flat and elongate pubes, and acetabulae that form a deep socket rimmed by a robust lip of bone. The pelvis is greatly enlarged relative to other finned tetrapodomorphs. Despite the enlargement and robusticity of the pelvis of Tiktaalik, it retains primitive features such as the lack of both an attachment for the sacral rib and an ischium. The pelvic fin of Tiktaalik (NUFV 108) is represented by fin rays and three endochondral elements: other elements are not preserved. The mosaic of primitive and derived features in Tiktaalik reveals that the enhancement of the pelvic appendage of tetrapods and, indeed, a trend toward hind limb-based propulsion have antecedents in the fins of their closest relatives.


Asunto(s)
Aletas de Animales/anatomía & histología , Peces/anatomía & histología , Pelvis/anatomía & histología , Anfibios , Aletas de Animales/fisiología , Animales , Evolución Biológica , Canadá , Peces/clasificación , Peces/fisiología , Fósiles , Paleontología , Pelvis/fisiología , Especificidad de la Especie , Vertebrados/anatomía & histología , Vertebrados/fisiología
20.
Trends Genet ; 29(7): 419-26, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23434323

RESUMEN

More than three centuries ago natural philosophers, and later anatomists, recognized a fundamental organization to the skeleton of tetrapod limbs. Composed of three segments, stylopod, zeugopod, and autopod, this pattern has served as the basis for a remarkably broad adaptive radiation from wings and flippers to hands and digging organs. A central area of inquiry has been tracing the origins of the elements of this Bauplan in the fins of diverse fish. Can equivalents of the three segments, and the developmental processes that pattern them, be seen in fish fins? In addition, if so, how do these data inform theories of the transformation of fins into limbs? Answers to these questions come from linking discoveries in paleontology with those of developmental biology and genetics. Burgeoning discoveries in the regulatory biology of developmental genes and in the genomics of diverse species offer novel data to investigate these classical questions.


Asunto(s)
Evolución Biológica , Extremidades/fisiología , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Aletas de Animales/fisiología , Animales , Pollos , Fósiles , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Paleontología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA