RESUMEN
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycinsâ A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Asunto(s)
Lipoglucopéptidos/aislamiento & purificación , Streptomyces/química , Lipoglucopéptidos/química , Conformación MolecularRESUMEN
4-Chloro-L-kynurenine (3-(4-chloroanthraniloyl)-L-alanine, L-4-ClKyn), an amino acid known as a prospective antidepressant, was recently for the first time found in nature in the lipopeptide antibiotic taromycin. Here, we report another instance of its identification in a natural product: 4-chloro-L-kynurenine was isolated from acidic hydrolysis of a new complex peptide antibiotic INA-5812. L-4-ClKyn is a fluorescent compound responsible for the fluorescence of the above antibiotic. Whereas fluorescence of 4-chlorokynurenine was not reported before, we synthesized the racemic compound and studied its emission in various solvents. Next, we prepared conjugates of DL-4-ClKyn with two suitable energy acceptors, BODIPY FL and 3-(phenylethynyl)perylene (PEPe), and studied fluorescence of the derivatives. 4-Chloro-DL-kynurenine emission is not detected in both conjugates, thus evidencing effective energy transfer. However, BODIPY FL emission in the conjugate is substantially reduced, probably due to collisional or photoinduced charge-transfer-mediated quenching. The intrinsic fluorescence of L-4-ClKyn amino acid in antibiotics paves the way for spectral studies of their mode of action.
Asunto(s)
Antibacterianos/química , Productos Biológicos/química , Quinurenina/análogos & derivados , Fluorescencia , Quinurenina/aislamiento & purificaciónRESUMEN
Along with bright fluorescence in the near-IR range, heptamethine carbocyanine dyes possess affinity to cancer cells. Thus, these dyes could be utilized as fluorescent labels and vectors for drug delivery as covalent conjugates with cytotoxic compounds. To test the properties, structure-activity relationship, and scope of such conjugates, we synthesized drug-dye dyads of tricarbocyanine dyes with anthracycline drug daunorubicin. We used hydrophilic zwitterionic and hydrophobic positively charged benzoindoline-benzothiazole-based heptamethine dyes as terminal alkyne derivatives and N-acylated or oxime-linked daunorubicin as azido-derivatives. These two alkynes and two azides were coupled to each other by Cu-catalyzed Huisgen-Meldal-Sharpless cycloaddition (click reaction) to afford four conjugates. Molecules based on hydrophobic dyes possess submicromolar cytotoxicity to HCT116 cells. Cytotoxicity, cell penetration, intracellular distribution, apoptosis induction and the effect of antioxidants on toxicity were evaluated. The results show that the structure of the cyanine-anthracycline conjugate (hydrophilicity/hydrophobicity, charge, linker, attachment site) is important for its biological activity, thus, expansion of the chemical space of such conjugates could provide new molecular research tools for diagnostics and therapy.
Asunto(s)
Antraciclinas , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Antraciclinas/farmacología , Carbocianinas/química , Alquinos/química , Daunorrubicina/farmacología , Azidas/química , Química ClicRESUMEN
Nonribosomal cyclopeptide cyclosporin A (CsA), produced by fungus Tolypocladium inflatum, is an extremely important immunosuppressive drug used in organ transplantations and for therapy of autoimmune diseases. Here we report for the first time production of CsA, along with related cyclosporins B and C, by Tolypocladium inflatum strains of marine origin (White Sea). Cyclosporins A-C contain an unusual amino acid, (4R)-4-((E)-2-butenyl)-4,N-dimethyl-l-threonine (MeBmt), and are prone to isomerization to non-active isocyclosporin by NâO acyl shift of valine connected to MeBmt in acidic conditions. CsA and isoCsA are not distinguishable in MS analysis of [M+H]+ ions due to rapid [CsA + H]+â[isoCsA + H]+ conversion. We found that the NâO acyl shift is completely suppressed in cyclosporine [M+2H]2+ ions, and their collision-induced dissociation (CID) can be used for rapid and unambiguous analysis of cyclosporins and isocylosporins. Fragmentation patterns of [CsA+2H]2+ and [isoCsA+2H]2+ ions were analyzed and explained. The developed approach could be useful for MS analysis of other peptides containing ß-hydroxy-α-amino acids.
Asunto(s)
Inmunosupresores , Péptidos , Trastornos Disociativos , Humanos , Hypocreales , IonesRESUMEN
The study of an archived sample of crystallomycin complex using HPLC, ESI HRMS, and 2D NMR showed that two major components of the antibiotic, compounds 1 and 2, are lipopeptides having the same peptide core, Asp1-cyclo(Dab2-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-), N-acylated either with Δ3-iso-tetradecenoyl or Δ3-anteiso-pentadecenoyl that are identical to aspartocins C and B, respectively. According to the 2D NMR study, compound 2 in DMSO solution exists as a mixture of four conformers. The producing strain was identified as Streptomyces griseorubens. Compounds 1 and 2 have considerable Ca2+-dependent activity against Gram-positive bacteria including five MRSA strains.