Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Med ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048567

RESUMEN

Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.

4.
Nat Med ; 24(3): 326-337, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400711

RESUMEN

Diffuse white-matter disease associated with small-vessel disease and dementia is prevalent in the elderly. The biological mechanisms, however, remain elusive. Using pericyte-deficient mice, magnetic resonance imaging, viral-based tract-tracing, and behavior and tissue analysis, we found that pericyte degeneration disrupted white-matter microcirculation, resulting in an accumulation of toxic blood-derived fibrin(ogen) deposits and blood-flow reductions, which triggered a loss of myelin, axons and oligodendrocytes. This disrupted brain circuits, leading to white-matter functional deficits before neuronal loss occurs. Fibrinogen and fibrin fibrils initiated autophagy-dependent cell death in oligodendrocyte and pericyte cultures, whereas pharmacological and genetic manipulations of systemic fibrinogen levels in pericyte-deficient, but not control mice, influenced the degree of white-matter fibrin(ogen) deposition, pericyte degeneration, vascular pathology and white-matter changes. Thus, our data indicate that pericytes control white-matter structure and function, which has implications for the pathogenesis and treatment of human white-matter disease associated with small-vessel disease.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Demencia/fisiopatología , Leucoencefalopatías/fisiopatología , Sustancia Blanca/fisiopatología , Animales , Axones/patología , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/patología , Barrera Hematoencefálica/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiopatología , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/diagnóstico por imagen , Demencia/sangre , Demencia/diagnóstico por imagen , Humanos , Leucoencefalopatías/sangre , Leucoencefalopatías/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Microcirculación , Vaina de Mielina/metabolismo , Pericitos/metabolismo , Pericitos/patología , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/diagnóstico por imagen
5.
Nat Med ; 22(9): 1050-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27548576

RESUMEN

Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage. Recombinant variants of APC, such as the 3K3A-APC (Lys191-193Ala) mutant in which three Lys residues (KKK191-193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models of ischemic stroke, brain trauma, multiple sclerosis, amyotrophic lateral sclerosis, sepsis, ischemic and reperfusion injury of heart, kidney and liver, pulmonary, kidney and gastrointestinal inflammation, diabetes and lethal body radiation. On the basis of proof-of-concept studies and an excellent safety profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests the potential for APC-based treatment as a strategy for structural repair in the human central nervous (CNS) system. Here we report that late postischemic treatment of mice with 3K3A-APC stimulates neuronal production by transplanted human NSCs, promotes circuit restoration and improves functional recovery. Thus, 3K3A-APC-potentiated neuronal recruitment from engrafted NSCs might offer a new approach to the treatment of stroke and related neurological disorders.


Asunto(s)
Encéfalo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Infarto de la Arteria Cerebral Media/fisiopatología , Células-Madre Neurales/efectos de los fármacos , Proteína C/farmacología , Proteínas Recombinantes/farmacología , Regeneración/efectos de los fármacos , Animales , Conducta Animal , Encéfalo/metabolismo , Isquemia Encefálica , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citometría de Flujo , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratones , Células-Madre Neurales/trasplante , Recuperación de la Función , Sinapsis
6.
Nat Neurosci ; 18(7): 978-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26005850

RESUMEN

PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-ß (Aß) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aß clearance across the murine blood-brain barrier (BBB) and accelerated Aß pathology in a manner that was reversible by endothelial PICALM re-expression. Using human brain endothelial monolayers, we found that PICALM regulated PICALM/clathrin-dependent internalization of Aß bound to the low density lipoprotein receptor related protein-1, a key Aß clearance receptor, and guided Aß trafficking to Rab5 and Rab11, leading to Aß endothelial transcytosis and clearance. PICALM levels and Aß clearance were reduced in AD-derived endothelial monolayers, which was reversible by adenoviral-mediated PICALM transfer. Inducible pluripotent stem cell-derived human endothelial cells carrying the rs3851179 protective allele exhibited higher PICALM levels and enhanced Aß clearance. Thus, PICALM regulates Aß BBB transcytosis and clearance, which has implications for Aß brain homeostasis and clearance therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Animales , Capilares/metabolismo , Endotelio Vascular/metabolismo , Homeostasis , Humanos , Tasa de Depuración Metabólica , Ratones , Ratones Noqueados , Proteínas de Ensamble de Clatrina Monoméricas/deficiencia , Células Madre Pluripotentes , Transcitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA