Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 662: 58-68, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335740

RESUMEN

Wood-conducting polymer materials have been widely used as supercapacitor electrode; however, it remains challenging to achieve a simple method to improve the homogeneity of the conductive material on wood and to reach high mass loading. Herein, a novel "pore-making, active substance-filling, densification (dissolution, in-situ polymerization of polyaniline (PANI), self-shrinking)" strategy is proposed for the preparation of wood electrodes with a high mass loading (41.4 wt%) and homogeneity. Ingeniously, ZnCl2 as a dissolving agent and pore-making agent to treat delignified wood can generate more pores on the wood, which is more conducive to the penetration of aniline small molecules, besides, the dissolved fine fibers can be entangled with more PANI, which can improve the loading and homogeneity of PANI. After drying treatment, there will be shrinkage again, playing a certain physical densification effect on the large lumen. The optical electrode was RWP2 showing high electrochemical performance (2328.9 mF/cm2, 1 mA/cm2), and stability (5000 cycles, 89.3 %). Moving forward, the RWP2//RWP2 SSC showed an excellent energy density of 164.24 µwh/cm2 at a power density of 250 µw/cm2. Remarkably, the simple and versatile strategy of designing wood-based materials with high mass loading provides new research ideas for realizing multifunctional applications.

2.
Int J Biol Macromol ; 238: 124008, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36933590

RESUMEN

Ultralight aerogels with low bulk density, highly porous nature, and functional performance have received significant focus in the field of water pollution treatment. Here, high-crystallinity, large surface-aera metal frame-work (ZIF-8) was efficiently utilized to assist in the preparation of ultralight yet highly oil and organic solvent adsorption capacity, double-network cellulose nanofibers/chitosan-based aerogels through a physical entanglement and scalable freeze-drying approach. After chemical vapor deposition with methyltrimethoxysilane, a hydrophobic surface was obtained with a water contact angle of 132.6°. The synthetic ultralight aerogel had low density (15.87 mg/cm3) and high porosity (99.01 %). Moreover, the aerogel had a three-dimensional porous structure, which endowed it with high adsorption capacity (35.99 to 74.55 g/g) for organic solvent, and outstanding cyclic stability (>88 % of the adsorption capacity after 20 cycles). At the same time, aerogel removes oil from various oil/water mixtures by gravity alone and has excellent separation performance. This work holding excellent properties in terms of convenient, low-cost, scalability to manufacture environmentally friendly biomass-based materials for oily water pollution treatment.


Asunto(s)
Quitosano , Nanofibras , Quitosano/química , Celulosa/química , Nanofibras/química , Aceites/química , Solventes , Contaminación del Agua
3.
Neuropeptides ; 95: 102267, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35752067

RESUMEN

Agouti-related protein/neuropeptide Y (AgRP/NPY) neurons promote feeding, while proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART) neurons and melanocortin receptor neurons inhibit feeding; these three types of neurons play vital roles in regulating feeding. The central melanocortin system composed of these neurons is critical for the regulation of food intake and energy metabolism. It regulates energy intake and consumption by activating or inhibiting the activities of AgRP/NPY neurons and POMC/CART neurons and then affects the feeding behaviour of animals to maintain the energy balance. Meanwhile, organisms can also positively or negatively regulate energy homeostasis through the negative feedback of the neuron system. With further studies, understanding of the process and factors involved in the energy balance regulation of mammals and birds can be improved, which will provide a favourable scientific basis to reduce costs and improve meat production in production and breeding.


Asunto(s)
Melanocortinas , Proopiomelanocortina , Proteína Relacionada con Agouti/metabolismo , Animales , Aves/metabolismo , Metabolismo Energético/fisiología , Mamíferos/metabolismo , Melanocortinas/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo
4.
Polymers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559846

RESUMEN

Heavy metal ions in industrial sewage constitute a serious threat to human health. Nanocellulose-based adsorbents are emerging as an environmentally friendly material platform for heavy metal ion removal based on their unique properties, which include high specific surface area, excellent mechanical properties, and biocompatibility. In this review, we cover the most recent works on nanocellulose-based adsorbents for heavy metal ion removal and present an in-depth discussion of the modification technologies for nanocellulose in the process of assembling high-performance heavy ion adsorbents. By introducing functional groups, such as amino, carboxyl, aldehyde, and thiol, the assembled nanocellulose-based adsorbents both remove single heavy metal ions and can selectively adsorb multiple heavy ions in water. Finally, the remaining challenges of nanocellulose-based adsorbents are pointed out. We anticipate that this review will provide indispensable guidance on the application of nanocellulose-based adsorbents for the removal of heavy metal ions.

5.
Nanomaterials (Basel) ; 12(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35010110

RESUMEN

In the present study, carboxymethyl cellulose nanofibrils (CMCNFs) with different carboxyl content (0.99-2.01 mmol/g) were prepared via controlling the ratio of monochloroacetic acid (MCA) and sodium hydroxide to Eucalyptus bleached pulp (EBP). CMCFs-PEI aerogels were obtained using the crosslinking reaction of polyethyleneimine (PEI) and CMCNFs with the aid of glutaraldehyde (GA). The effects of pH, contact time, temperature, and initial Cu2+ concentration on the Cu2+ removal performance of CMCNFs-PEI aerogels was highlighted. Experimental data showed that the maximum adsorption capacity of CMCNF30-PEI for Cu2+ was 380.03 ± 23 mg/g, and the adsorption results were consistent with Langmuir isotherm (R2 > 0.99). The theoretical maximum adsorption capacity was 616.48 mg/g. After being treated with 0.05 M EDTA solution, the aerogel retained an 85% removal performance after three adsorption-desorption cycles. X-ray photoelectron spectroscopy (XPS) results demonstrated that complexation was the main Cu2+ adsorption mechanism. The excellent Cu2+ adsorption capacity of CMCNFs-PEI aerogels provided another avenue for the utilization of cellulose nanofibrils in the wastewater treatment field.

6.
J Phys Condens Matter ; 34(9)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34814131

RESUMEN

α-Sn is a topologically nontrivial semimetal in its natural structure. Upon compressively strained in plane, it transforms into a topological insulator. But, up to now, a clear and systematic understanding of the topological surface mode of topological insulating α-Sn is still lacking. In the present work, first-principle simulations are employed to investigate the electronic structure evolution of Ge1-xSnxalloys aiming at understanding the band reordering, topological phase transition and topological surface mode of α-Sn in detail. Progressing from Ge to Sn with increasing Sn content in Ge1-xSnx, the conduction band inverts with the first valence band (VB) and then with the second VB sequentially, rather than inverting with the latter directly. Correspondingly, a topologically nontrivial surface mode arises in the first inverted band gap. Meanwhile, a fragile Dirac cone appears in the second inverted band gap as a result of the reorganization of the topological surface mode caused by the first VB. The reorganization of the topological surface mode in α-Sn is very similar to the HgTe case. The findings of the present work are helpful for understanding and utilizing of the topological surface mode of α-Sn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA