Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(19): 10172-10180, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341149

RESUMEN

The Great Unconformity marks a major gap in the continental geological record, separating Precambrian basement from Phanerozoic sedimentary rocks. However, the timing, magnitude, spatial heterogeneity, and causes of the erosional event(s) and/or depositional hiatus that lead to its development are unknown. We present field relationships from the 1.07-Ga Pikes Peak batholith in Colorado that constrain the position of Cryogenian and Cambrian paleosurfaces below the Great Unconformity. Tavakaiv sandstone injectites with an age of ≥676 ± 26 Ma cut Pikes Peak granite. Injection of quartzose sediment in bulbous bodies indicates near-surface conditions during emplacement. Fractured, weathered wall rock around Tavakaiv bodies and intensely altered basement fragments within unweathered injectites imply still earlier regolith development. These observations provide evidence that the granite was exhumed and resided at the surface prior to sand injection, likely before the 717-Ma Sturtian glaciation for the climate appropriate for regolith formation over an extensive region of the paleolandscape. The 510-Ma Sawatch sandstone directly overlies Tavakaiv-injected Pikes granite and drapes over core stones in Pikes regolith, consistent with limited erosion between 717 and 510 Ma. Zircon (U-Th)/He dates for basement below the Great Unconformity are 975 to 46 Ma and are consistent with exhumation by 717 Ma. Our results provide evidence that most erosion below the Great Unconformity in Colorado occurred before the first Neoproterozoic Snowball Earth and therefore cannot be a product of glacial erosion. We propose that multiple Great Unconformities developed diachronously and represent regional tectonic features rather than a synchronous global phenomenon.

2.
Sci Data ; 10(1): 250, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202393

RESUMEN

A dataset to describe exposed bedrock and surficial geology of Antarctica has been constructed by the GeoMAP Action Group of the Scientific Committee on Antarctic Research (SCAR) and GNS Science. Our group captured existing geological map data into a geographic information system (GIS), refined its spatial reliability, harmonised classification, and improved representation of glacial sequences and geomorphology, thereby creating a comprehensive and coherent representation of Antarctic geology. A total of 99,080 polygons were unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial resolution. Geological unit definition is based on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs the international Geoscience Markup Language (GeoSciML) data protocols to provide attribute-rich and queryable information, including bibliographic links to 589 source maps and scientific literature. GeoMAP is the first detailed geological map dataset covering all of Antarctica. It depicts 'known geology' of rock exposures rather than 'interpreted' sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation.

3.
Nat Commun ; 9(1): 2289, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915266

RESUMEN

Understanding how the Antarctic ice sheet will respond to global warming relies on knowledge of how it has behaved in the past. The use of numerical models, the only means to quantitatively predict the future, is hindered by limitations to topographic data both now and in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological processes interact. Incorporating the variety and interplay of such processes, operating at multiple spatio-temporal scales, is critical to modeling the Antarctic's system evolution and requires direct observations in challenging locations. As these processes do not observe disciplinary boundaries neither should our future research.

4.
Nat Commun ; 9(1): 2742, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992953

RESUMEN

The original version of this Article contained an error in the spelling of the author Florence Colleoni, which was incorrectly given as Florence Colloni. This has been corrected in both the PDF and HTML versions of the Article.

5.
Science ; 299(5603): 99-102, 2003 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-12511648

RESUMEN

Surface exposure ages of glacial deposits in the Ford Ranges of western Marie Byrd Land indicate continuous thinning of the West Antarctic Ice Sheet by more than 700 meters near the coast throughout the past 10,000 years. Deglaciation lagged the disappearance of ice sheets in the Northern Hemisphere by thousands of years and may still be under way. These results provide further evidence that parts of the West Antarctic Ice Sheet are on a long-term trajectory of decline. West Antarctic melting contributed water to the oceans in the late Holocene and may continue to do so in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA