Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37640028

RESUMEN

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Oligodendroglía/metabolismo
2.
Brain ; 144(11): 3461-3476, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34115105

RESUMEN

TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , Neuronas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Esclerosis Amiotrófica Lateral/patología , Células Cultivadas , Demencia Frontotemporal/patología , Humanos , Neuronas/patología , ARN Mensajero
3.
J Proteome Res ; 20(6): 3165-3178, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33939924

RESUMEN

Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.


Asunto(s)
Gránulos Citoplasmáticos , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteómica , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/genética
4.
J Neurochem ; 157(4): 944-962, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349931

RESUMEN

Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.


Asunto(s)
ADN Helicasas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Animales , Humanos
5.
Brain ; 141(5): 1320-1333, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29562314

RESUMEN

See Fratta and Isaacs (doi:10.1093/brain/awy091) for a scientific commentary on this article.The RNA binding proteins TDP-43 (encoded by TARDBP) and hnRNP A1 (HNRNPA1) are each mutated in certain amyotrophic lateral sclerosis cases and are often mislocalized in cytoplasmic aggregates within motor neurons of affected patients. Cytoplasmic inclusions of TDP-43, which are accompanied by a depletion of nuclear TDP-43, are observed in most amyotrophic lateral sclerosis cases and nearly half of frontotemporal dementia cases. Here, we report that TDP-43 binds HNRNPA1 pre-mRNA and modulates its splicing, and that depletion of nuclear TDP-43 results in increased inclusion of a cassette exon in the HNRNPA1 transcript, and consequently elevated protein levels of an isoform containing an elongated prion-like domain, referred to as hnRNP A1B. Combined in vivo and in vitro approaches demonstrated greater fibrillization propensity for hnRNP A1B, which drives protein aggregation and is toxic to cells. Moreover, amyotrophic lateral sclerosis patients with documented TDP-43 pathology showed neuronal hnRNP A1B cytoplasmic accumulation, indicating that TDP-43 mislocalization may contribute to neuronal vulnerability and loss via altered HNRNPA1 pre-mRNA splicing and function. Given that TDP-43 and hnRNP A1 each bind, and thus modulate, a third of the transcriptome, our data suggest a much broader disruption in RNA metabolism than previously considered.


Asunto(s)
Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Agregación Patológica de Proteínas/metabolismo , Empalme Alternativo/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Dactinomicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Inmunoprecipitación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Oligopéptidos/genética , Oligopéptidos/metabolismo , Sitios de Empalme de ARN/efectos de los fármacos , Sitios de Empalme de ARN/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Médula Espinal/patología , Transfección
6.
Adv Exp Med Biol ; 1203: 195-245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31811636

RESUMEN

In recent years, cytoplasmic RNA granules, which are micron-sized membrane-less entities formed by phase separation, have progressively gained recognition as essential constituents of neuronal RNA metabolism. Stress granules form under adverse growth conditions in order to protect nontranslating mRNA, shift translation toward the production of prosurvival factors, as well as potentially serve as hubs for intracellular signaling. In contrast, processing bodies play a role in RNA degradation in both stressed and homeostatic conditions. Lastly, transport granules permit, as their name indicates, the transport of mRNA within neurons. All of these granule subtypes are required for proper neuronal function; thus, impairments in their regulation and/or composition are expected to be deleterious. Here, we review these cytoplasmic RNA granule subtypes and discuss how they have been implicated in some neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , ARN Mensajero , Gránulos Citoplasmáticos/metabolismo , Humanos , Enfermedades Neurodegenerativas/fisiopatología , ARN Mensajero/metabolismo
8.
Methods Mol Biol ; 2428: 199-228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171482

RESUMEN

Stress granules have gained considerable exposure and interest in recent years. These micron-sized entities, composed of RNA and protein, form following a stress exposure and have been linked to several pathologies. Understanding stress granule function is paramount but has been arduous due to the membraneless nature of these organelles. Several new methodologies have recently been developed to catalogue the protein and RNA composition of stress granules. Collectively, this work has provided important insights to potential stress granule functions as well as molecular mechanisms for their assembly and disassembly. This chapter reviews the latest advancements in the understanding of stress granule dynamics and discusses the various protocols developed to study their composition.


Asunto(s)
Gránulos Citoplasmáticos , Gránulos de Estrés , Gránulos Citoplasmáticos/metabolismo , Orgánulos/metabolismo , Estrés Fisiológico
9.
Front Neurosci ; 15: 724307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630013

RESUMEN

RNA binding proteins (RBPs) play a key role in cellular growth, homoeostasis and survival and are tightly regulated. A deep understanding of their spatiotemporal regulation is needed to understand their contribution to physiology and pathology. Here, we have characterized the spatiotemporal expression pattern of hnRNP A1 and its splice variant hnRNP A1B in mice. We have found that hnRNP A1B expression is more restricted to the CNS compared to hnRNP A1, and that it can form an SDS-resistant dimer in the CNS. Also, hnRNP A1B expression becomes progressively restricted to motor neurons in the ventral horn of the spinal cord, compared to hnRNP A1 which is more broadly expressed. We also demonstrate that hnRNP A1B is present in neuronal processes, while hnRNP A1 is absent. This finding supports a hypothesis that hnRNP A1B may have a cytosolic function in neurons that is not shared with hnRNP A1. Our results demonstrate that both isoforms are differentially expressed across tissues and have distinct localization profiles, suggesting that the two isoforms may have specific subcellular functions that can uniquely contribute to disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA