Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 56(9): 5122-5134, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28425699

RESUMEN

The closely related benzylene-linked diaminophosphines PhP(CH2C6H4-o-NHPh)2 (AH2) and PhP(C6H4-o-CH2NHXyl)2 (BH2 with Xyl = 3,5-Me2C6H3) were employed for the synthesis of tantalum(V) alkyls, which were then studied with respect to hydrogenolysis. In the case of AH2, the tantalum trimethyl complex [Ta(A)Me3] (1) and the tantalum hydrocarbyl complex [Ta(A)(CH2SiMe3)(η2-EtC≡CEt)] (2) were prepared from the ligand's dilithium salt (A)Li2(diox). Upon hydrogenolysis of 1 and 2, the formation of methane and SiMe4, respectively, was observed, but well-defined tantalum hydrides could not be detected. In the case of BH2, the cyclometalated species [Ta(B*)(NMe2)2] (3 with B* = κ4-N,P,N,C-(PhP(C6H4-o-CH2NXyl)(C6H4-o-CHNXyl))3-) was isolated and converted to the corresponding diiodo species [Ta(B*)I2] (4). Treatment of 4 with LiCH2SiMe3 resulted in the isolation of the corresponding dialkyl complex [Ta(B*)(CH2SiMe3)2] (5), which was converted to the doubly cyclometalated monoalkyl complexes [Ta(B**)(CH2SiMe3)(PMe3)] (6 with B** = κ5-C,N,P,N,C-(PhP(C6H4-o-CHNXyl)2)4-) and [Ta(B**)(CH2SiMe3)(dmpe)] (7) via reaction with PMe3 and dmpe, respectively. In contrast to 5 and 6, 7 was found to react cleanly with dihydrogen to afford the corresponding terminal tantalum(V) hydride [Ta(B**)(H)(dmpe)] (8). Upon reaction of 7 with D2, the deuteride [Ta(d2-B**)(D)(dmpe)] (9) was obtained and found to contain deuterium atoms in the methine positions of both tantalaaziridine subunits. The partially deuterated derivatives [Ta(B**)(D)(dmpe)] (10) and [Ta(d2-B**)(H)(dmpe)] (11) were generated via reaction of 8 and 9 with PhSiD3 and PhSiH3, respectively. Prior to the addition of gaseous D2 or H2, no H/D scrambling was observed in 10 or 11, indicating that the exchange of the methine positions proceeds via addition of D2 or H2 across the tantalaaziridine Ta-C bonds.

2.
Inorg Chem ; 54(8): 4094-103, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25856693

RESUMEN

The triamidophosphine protioligand 1 reacts with the homoleptic pentakis(dimethylamido) precursors of niobium and tantalum [M(NMe2)5, where M = Nb, Ta] to form cyclometalated complexes of the type [N2PCN-κ(5)-N,N,P,C,N]M(NMe2) (2-M). Apart from the three amido donors, one benzylic position of the ligand backbone is deprotonated over the course of this reaction, resulting in the formation of a new M-C bond. As a consequence, a metallaziridine substructure is formed, and the triamidophosphine moiety thus serves as a tetraanionic pentadentate ligand. The dimethylamido complexes 2-M can be converted into the corresponding triflates [N2PCN-κ(5)-N,N,P,C,N]M(OTf) (3-M) and alkyl complexes [N2PCN-κ(5)-N,N,P,C,N]M(CH2SiMe3) (4-M) by treatment with triethylsilyl triflate (Et3SiO3SCF3) followed by (trimethylsilyl)methyllithium (LiCH2SiMe3). The alkyl complexes exhibit interesting reactivities, including a second cyclometalative backbone activation affording the trimethylphosphine-stabilized complexes [NP(CN)2-κ(6)-N,P,C,N,C,N]M(PMe3) (5-M). In the case of tantalum, the formation of a dinuclear hydrido complex (6) is observed upon hydrogenation of 4-Ta. In the case of niobium, the metallaziridine substructure in 4-Nb is prone to ring opening via protonation with triphenylsilylamine (Ph3SiNH2), resulting in formation of the corresponding imido complex [PN3-κ(4)-P,N,N,N]Nb=NSiPh3 (7).

3.
Inorg Chem ; 53(8): 4144-53, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24712705

RESUMEN

A new tripodal trisamidophosphine ligand (1) based on the trisbenzylphosphine backbone has been synthesized in three steps starting from NaPH2 and phthaloyl-protected 2-aminobenzyl bromide. At elevated temperatures, 1 reacts directly with M(NMe2)4 (M = Zr, Hf) to afford the dimethylamido complexes [PN3]M(NMe2) (M = Zr, Hf) (2), which are easily converted into the corresponding triflates [PN3]MOTf (M = Zr, Hf) (3) via reaction with triethylsilyl trifluoromethanesulfonate. The related titanium chloro complex [PN3]TiCl (4-Ti) is obtained from 1 and Bn3TiCl via protonolysis. Triple deprotonation of 1 with n-butyllithium affords the tris-lithium salt Li3[PN3] (1-Li), which serves as a common starting material for the preparation of all the group(IV) chlorides [PN3]MCl (M = Ti, Zr, Hf) (4). Upon treatment of 4-Ti with Bn2Mg(thf)2, formation of a benzyltitanium species is observed, which is converted cleanly into a ligand-CH-activated species (5-Ti).

4.
Dalton Trans ; 46(18): 5816-5834, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28401977

RESUMEN

The benzylene-linked [PNP] scaffolds HN(CH2-o-C6H4PPh2)2 ([A]H) and HN(C6H4-o-CH2PPh2)2 ([B]H) have been used for the synthesis of zirconium and hafnium complexes. For both ligands, the dimethylamides [A]M(NMe2)3 ([A]1-M) and [B]M(NMe2)3 ([B]1-M) were prepared and converted to the iodides [A]MI3 ([A]2-M) and [B]MI3 ([B]2-M) (M = Zr, Hf). Starting from these iodides, the corresponding benzyl derivatives [A]MBn3 ([A]3-M) and [B]MBn3 ([B]3-M) (M = Zr, Hf) were obtained via reaction with Bn2Mg(OEt2)2. For zirconium, the benzylic ligand positions in [A]3-Zr and [B]3-Zr were found to cyclometalate readily, which led to the corresponding κ4-[PCNP]ZrBn2 complexes [A]4-Zr and [B]4-Zr. As these complexes failed to hydrogenate cleanly, cyclometalated derivatives with only one alkyl substituent were targeted and the mixed benzyl chlorides κ4-[PCNP]MBnCl ([B]5-M, M = Zr, Hf) were obtained in the case of ligand [B]. Upon hydrogenation of [B]5-Zr, the η6-tolyl complex [B]Zr(η6-C7H8)Cl ([B]6-Zr) was generated cleanly, but the corresponding hafnium complex [B]5-Hf was found to decompose unselectively in the presence of H2. Using a closely related carbazole-based [PNP] ligand, Gade and co-workers have shown recently that zirconium η6-arene complexes similar to [B]6-Zr may serve as zirconium(ii) synthons, namely when reacted with 2,6-Dipp-NC (L) or pyridine (py). Both these substrates were shown to react cleanly with [B]6-Zr, which led to the formation of the bis-isocyanide complex [B]ZrCl(L)2 ([B]7-Zr) and the 2,2'-bipyridine derivative [B]ZrCl(bipy) ([B]8-Zr), respectively. Upon reaction of [B]Zr(η6-C7H8)Cl ([B]6-Zr) with NaBEt3H, the cyclometalated derivative κ4-[PCNP]Zr(η6-C7H8) ([B]9-Zr) was isolated. In an attempt to synthesise terminal hydrides, complexes [A]MI3 ([A]2-M) were treated with KBEt3H, which led to the isolation of the cyclometalated hydrido complexes κ4-[PCNP]M(H)(κ3-Et3BH) ([A]10-M; M = Zr, Hf) featuring a κ3-bound triethyl borohydride moiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA