Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 237(Pt 2): 117019, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652219

RESUMEN

Graphitic carbon nitride (GCN) is an optical semiconductor with excellent photoactivity under visible light irradiation. It has been widely applied for organic micropollutant removal from contaminated water, and less investigated for microorganisms' inactivation. The photocatalytic degradation mechanism using GCN is attributed to a series of reactions with reactive oxygen species and photogenerated holes that can be boosted by modifying its physical-chemical structure. This work reports a successful improvement of the overall photocatalytic and electrocatalytic activities of the pristine material by thermal and chemical modification by a copolymerisation synthesis method. The copolymerisation of dicyandiamide as a precursor with barbituric acid strongly reduced photoluminescence due to the enhanced charge separation thus improving the catalyst efficiency under visible light irradiation. The material with 1.6 wt% of barbituric acid showed the best photocatalytic performance and electrochemical properties. This photocatalyst was selected for immobilisation on a conductive carbon foam, which promotes a higher electrochemical active surface area and enhanced mass transfer. This three-dimensional metal-free electrode was employed for the photoelectrochemical inactivation of two different microorganisms, Escherichia coli, and Enterococcus faecalis, obtaining removals below the detection limit after 30 min in simulated faecal-contaminated waters. This photoelectrochemical reactor was also applied to treat polluted river and urban waste waters, and the faecal contamination indicators were vastly reduced to values below the detection limit in 60 min in both cases, showing the wide applicability of this innovative photoelectrode for different types of polluted aqueous matrices.

2.
J Environ Manage ; 348: 119314, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857217

RESUMEN

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O3)-based processes (NF + O3, NF + O3/H2O2 and NF + O3/H2O2/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production. Nanofiltration was performed in a pilot-scale unit and O3-based processes in a continuous-flow column. The peroxone process (O3/H2O2) was considered the most promising technology to be coupled to nanofiltration, all the target pharmaceuticals being removed at an extent higher than 98% from WWTP secondary effluents, with a DOC reduction up to 92%. The applicability of the clean water stream for recharging aquifers used as abstraction sources for drinking water production was supported by a risk assessment approach, regarding the final concentrations of the target pharmaceuticals. Moreover, the toxicity of the nanofiltration retentate, a polluted stream generated from the nanofiltration system, was greatly decreased after the application of the peroxone process, which evidences the positive impact on the environment of implementing a NF + O3/H2O2 process.


Asunto(s)
Antineoplásicos , Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Oxidación-Reducción
3.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770878

RESUMEN

Eighteen per-and polyfluoroalkyl substances (PFASs) were investigated in surface waters of four river basins in Portugal (Ave, Leça, Antuã, and Cértima) during the dry and wet seasons. All sampling sites showed contamination in at least one of the seasons. In the dry season, perfluorooctanoate acid (PFOA) and perfluoro-octane sulfonate (PFOS), were the most frequent PFASs, while during the wet season these were PFOA and perfluobutane-sulfonic acid (PFBS). Compounds detected at higher concentrations were PFOS (22.6 ng L-1) and perfluoro-butanoic acid (PFBA) (22.6 ng L-1) in the dry and wet seasons, respectively. Moreover, the prospective environmental risks of PFASs, detected at higher concentrations, were evaluated based on the Risk Quotient (RQ) classification, which comprises acute and chronic toxicity. The results show that the RQ values of eight out of the nine PFASs were below 0.01, indicating low risk to organisms at different trophic levels in the four rivers in both seasons, wet and dry. Nevertheless, in the specific case of perfluoro-tetradecanoic acid (PFTeA), the RQ values calculated exceeded 1 for fish (96 h) and daphnids (48 h), indicating a high risk for these organisms. Furthermore, the RQ values were higher than 0.1, indicating a medium risk for fish, daphnids and green algae (96 h).


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Ríos , Ácidos Alcanesulfónicos/análisis , Portugal , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Alcanosulfonatos , Peces
4.
Environ Res ; 204(Pt A): 111955, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34454936

RESUMEN

Aquaculture is the fastest growing animal food-producing sector. Water is the central resource for aquaculture, and it is essential that its quality be preserved. Micropollutants (MPs) can reach aquaculture through anthropogenic addition or inlet water, and may cause harmful effects such as endocrine disruption and antibiotic resistance, adversely affecting the fish species being farmed. Furthermore, the discharge of aquaculture effluents into the environment may contribute to the deterioration of water courses. In this sense, the implementation of environmentally responsible measures in aquaculture farms is imperative for the protection of ecosystems and human health. The European Commission (EC) has recently launched a guiding document promoting ecological aquaculture practices; however, options for water treatment are still lacking. Conventional processes are not designed to deal with MPs; this review article consolidates relevant information on the application of advanced oxidation technologies (AOTs) and constructed wetlands (CWs) as potential strategies in this regard. Although 161 studies on the application of AOTs or CWs in aquaculture have already been published, only 34 focused on MPs (28 on AOTs and 6 on CWs), whereas the others reported the removal of contaminants such as bacteria, organic matter, solids and inorganic ions. No study coupling both treatments has been reported to date for the removal of MPs from aquaculture waters. AOTs and CWs are prospective alternatives for the treatment of aquacultural aqueous matrices. However, the type of aquaculture activity and the specifications of these available technologies should be considered while selecting the most suitable treatment option.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Animales , Acuicultura , Ecosistema , Humanos , Estudios Prospectivos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
J Environ Manage ; 308: 114622, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124314

RESUMEN

Plastic derived carbon nanotubes (CNTs) were tested as catalysts in persulfate activation for the first time. Four catalysts were prepared by wetness impregnation and co-precipitation (using Al2O3, Ni, Fe and/or Al) and implemented to grow CNTs by chemical vapour deposition (CVD) using low-density polyethylene (LDPE) as carbon feedstock. A catalyst screening was performed in batch mode and the best performing CNTs (CNT@Ni+Fe/Al2O3-cp) led to a high venlafaxine mass removal rate (3.17 mg g-1 h-1) in ultrapure water after 90 min (even with a mixture of micropollutants). Its degradation increased when the matrix was replaced by drinking water and negligibly affected in surface water. A composite polymeric membrane was then fabricated with CNT@Ni+Fe/Al2O3-cp and polyvinylidene fluoride (PVDF), a high venlafaxine mass removal rate in surface water being also observed in 24 h of continuous operation. Therefore, the results herein reported open a window of opportunity for the valorisation of plastic wastes in this catalytic application performed in continuous mode.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Catálisis , Polietileno , Agua , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 200: 511-529, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28628868

RESUMEN

Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions.


Asunto(s)
Gas Natural , Aguas Residuales , Recursos Hídricos , Ambiente , Yacimiento de Petróleo y Gas , Agua
7.
Anal Bioanal Chem ; 408(29): 8355-8367, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27734144

RESUMEN

Organic micropollutants present in drinking water (DW) may cause adverse effects for public health, and so reliable analytical methods are required to detect these pollutants at trace levels in DW. This work describes the first green analytical methodology for multi-class determination of 21 pollutants in DW: seven pesticides, an industrial compound, 12 pharmaceuticals, and a metabolite (some included in Directive 2013/39/EU or Decision 2015/495/EU). A solid-phase extraction procedure followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (offline SPE-UHPLC-MS/MS) method was optimized using eco-friendly solvents, achieving detection limits below 0.20 ng L-1. The validated analytical method was successfully applied to DW samples from different sources (tap, fountain, and well waters) from different locations in the north of Portugal, as well as before and after bench-scale UV and ozonation experiments in spiked tap water samples. Thirteen compounds were detected, many of them not regulated yet, in the following order of frequency: diclofenac > norfluoxetine > atrazine > simazine > warfarin > metoprolol > alachlor > chlorfenvinphos > trimethoprim > clarithromycin ≈ carbamazepine ≈ PFOS > citalopram. Hazard quotients were also estimated for the quantified substances and suggested no adverse effects to humans. Graphical Abstract Occurrence and removal of multi-class micropollutants in drinking water, analyzed by an eco-friendly LC-MS/MS method.


Asunto(s)
Agua Potable/análisis , Monitoreo del Ambiente/métodos , Agua Dulce/análisis , Tecnología Química Verde/métodos , Contaminantes Químicos del Agua/análisis , Pozos de Agua , Cromatografía Liquida/métodos , Monitoreo del Ambiente/instrumentación , Tecnología Química Verde/instrumentación , Portugal , Extracción en Fase Sólida , Espectrometría de Masas en Tándem/métodos
8.
Ecotoxicol Environ Saf ; 120: 124-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26057079

RESUMEN

Several physiological, biochemical and molecular biology responses were analysed in Solanum nigrum L. plants exposed for 28 days to an effluent that resulted from the photo-Fenton treatment of a highly concentrated pesticide and systemic fungicide aqueous solution, containing metalaxyl as active compound (150mgL(-1)), in order to pinpoint metabolic steps for a future increase of these plants' capacity to deal with the chemical process by-products. Although plants suffered oxidative stress, as indicated by increased membrane damage and a negative effect on plant biomass, they absorbed the excess iron and acted on the resulting by-products present in the effluent after the photo-Fenton process. Nitrogen assimilation and metallothionein gene expression were down regulated, while glutathione biosynthesis increased. These results suggest an enhanced nitrogen assimilation and/or metallothionein accumulation as relevant key points for further plant improvement in order to increase the efficiency of this innovative strategy that considers integration of the photo-Fenton process (as chemical primary treatment) with S. nigrum L. plants (as biological remediation post-treatment) for heavily polluted wastewaters.


Asunto(s)
Biodegradación Ambiental , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Oxidantes/farmacología , Estrés Oxidativo/fisiología , Solanum nigrum/fisiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Alanina/análogos & derivados , Alanina/metabolismo , Biomasa , Fungicidas Industriales/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Metalotioneína/metabolismo , Nitrógeno/metabolismo , Solanum nigrum/efectos de los fármacos
9.
Phys Chem Chem Phys ; 16(24): 12237-50, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24821484

RESUMEN

A specific methodology based on nitric acid hydrothermal oxidation was used to control the surface chemistry of multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes (CNTs) with different lengths, and this methodology was adapted to the use of sulphuric acid containing ammonium persulfate as an oxidizing agent. The amount of oxygen-containing surface groups depends on the number and length of the graphene layers of the CNTs, thicker and shorter CNTs having more reactive sites for surface functionalization. In particular, the oxidation of MWCNTs was more pronounced than that of short SWCNTs and less surface groups were introduced into long SWCNTs, regardless of the acid used at any fixed concentration. It was also possible to tailor the surface chemistry of both SWCNTs and MWCNTs by using the adopted methodologies, and the amount of both oxygen- and sulphur-containing functional groups was correlated with the concentration of each oxidizing agent used. Mathematical functions that allow precise control of the amount and type of the surface groups introduced into carbon nanotubes were obtained. Buckypapers were also prepared over a polytetrafluoroethylene commercial membrane. These membranes were tested in direct contact membrane distillation and, under salinity conditions, the membrane prepared using oxidized MWCNTs (instead of SWCNTs) was the most efficient, the permeate flux of the commercial membrane significantly increasing in the presence of these CNTs, while completely rejecting chloride ions. In addition, the permeate flux was precisely correlated with the amount of oxygenated functional surface groups (as well as with the pH of point of zero charge) of the oxidized MWCNTs.

10.
Sci Total Environ ; 912: 169198, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38097072

RESUMEN

In this work, agricultural rinse wastewater, which is produced during the cleaning of agricultural equipment and constitutes a major source of pesticides, was treated by fungal bioremediation and ozonation, both individually and combined in a two-stage treatment train. Three major pesticides (thiacloprid, chlortoluron, and pyrimethanil) were detected in rinse wastewater, with a total concentration of 38.47 mg C L-1. Comparing both technologies, ozonation in a stirred reactor achieved complete removal of these pesticides (720 min) while proving to be a more effective approach for reducing colour, organic matter, and bacteria. However, this technique produced transformation products and increased toxicity. In contrast, fungal bioremediation in a rotating drum bioreactor attenuated toxicity levels and did not produce such metabolites, but only removed approximately 50 % of target pesticide - hydraulic retention time (HRT) of 5 days - and obtained worse results for most of the general quality parameters studied. This work also includes a preliminary economic assessment of both technologies, revealing that fungal bioremediation was 2 times more cost-effective than ozonation. The treatment train, consisting of a first stage of fungal bioremediation followed by ozonation, was found to be a promising approach as it synergistically combines the advantages of both treatments, achieving high removals of pesticides (up to 100 %) and transformation products, while reducing operating costs and producing a biodegradable effluent. This is the first time that fungal bioremediation and ozonation technologies have been compared and combined in a treatment train to deal with pesticides in agricultural rinse wastewater.


Asunto(s)
Ozono , Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582104

RESUMEN

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Asunto(s)
Agua Potable , Odorantes , Spirulina , Gusto , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/química , Odorantes/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Naftoles , Humanos , Canfanos , Adsorción , Microextracción en Fase Sólida/métodos , Carbono , Cromatografía de Gases y Espectrometría de Masas
12.
Aquat Toxicol ; 271: 106906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588636

RESUMEN

Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 µg L-1) or each enantiomer (at 0.10 or 1.0 µg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 µg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.


Asunto(s)
Daphnia , Oxidación-Reducción , Contaminantes Químicos del Agua , Daphnia/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Estereoisomerismo , Aguas Residuales/química , Aguas Residuales/toxicidad , Daphnia magna
13.
Photochem Photobiol Sci ; 12(4): 638-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23064356

RESUMEN

Photochemical and photocatalytic degradation of the emerging pollutant trans-resveratrol has been studied under different irradiation wavelengths and using different TiO2 catalysts. trans-Resveratrol was more easily degraded when irradiated using the whole spectral range (UV-Vis) rather than with UV and near-UV to visible irradiation. The main intermediate of trans-resveratrol phototransformation was identified as its isomer cis-resveratrol. Different TiO2 catalysts were used to carry out the photocatalytic degradation of trans-resveratrol. Catalysts properties such as crystallite dimensions, surface area and presence of hydroxy surface groups are shown to be crucial to the photocatalytic efficiency of the materials tested. From the point of view of trans-resveratrol abatement, the photocatalytic process was more efficient than the pure photochemical one resulting in higher degradation rates and higher organic content removal. Six photoproducts of trans-resveratrol phototransformation were identified mainly resulting from the attack of the hydroxyl radical to the organic molecule.


Asunto(s)
Luz , Estilbenos/química , Catálisis , Isomerismo , Cinética , Fotólisis , Resveratrol , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Rayos Ultravioleta
14.
J Hazard Mater ; 448: 130883, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731320

RESUMEN

The consumption of cytostatics, pharmaceuticals prescribed in chemotherapy, is increasing every year and worldwide, along with the incidence of cancer. The presence and the temporal evolution of cytostatics in wastewaters from a Portuguese hospital center was evaluated through a 9-month sampling campaign, comprising a total of one hundred and twenty-nine samples, collected from May 2019 to February 2020. Eleven cytostatics out of thirteen pharmaceuticals were studied, including flutamide, mycophenolate mofetil and mycophenolic acid, which have never been monitored before. Target analytes were extracted and quantified by solid-phase extraction coupled to liquid-chromatography-tandem mass spectrometry analysis; the method was fully validated. All pharmaceuticals were detected in at least one sample, bicalutamide being the one found with higher frequency (detected in all samples), followed by mycophenolic acid, which was also the compound detected at higher concentrations (up to 5340 ± 211 ng/L). Etoposide, classified as carcinogenic to humans, was detected in 60% of the samples at concentrations up to 142 ± 15 ng/L. The risk from exposure to cytostatics was estimated for aquatic organisms living in receiving bodies. Cyclophosphamide, doxorubicin, etoposide, flutamide, megestrol and mycophenolic acid are suspected to induce risk. Long-term and synergic effects should not be neglected, even for the cytostatics for which no risk was estimated.


Asunto(s)
Citostáticos , Contaminantes Químicos del Agua , Humanos , Citostáticos/análisis , Flutamida , Etopósido/análisis , Ácido Micofenólico , Contaminantes Químicos del Agua/química , Extracción en Fase Sólida/métodos , Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas
15.
Sci Total Environ ; 808: 152050, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856274

RESUMEN

The quality of water bodies has been decreasing over time. Urban wastewater treatment plants (UWWTPs) are key players to avoid that potentially toxic micropollutants reach the environment, and advanced treatment processes are being applied to address this issue. However, several variables have to be taken into account, particularly environmental sustainability. The aim of this study is to assess the life cycle impacts of combining UVC with different oxidants - hydrogen peroxide (H2O2), peroxymonosulfate (PMS) and persulfate (PS) -, considering different concentrations (0.05, 0.20 and 0.50 mM) and UVC dosages of 42, 63 and 170 J/L, corresponding to UV contact times of 4, 7 and 18 s in a specific industrial equipment. UVC/PMS was the worst performing process (despite being able to achieve removals similar to UVC/H2O2), followed by UVC/PS. Both would only be preferred relatively to H2O2 if much lower concentrations of PMS or PS could be used to achieve the same removal of micropollutants (10 times lower was not enough). Additionally, PMS and PS production contributes more to the environmental footprint than the electricity use, unlike H2O2. Therefore even if considering lower treatment times when using sulfate-based oxidants, these will still be more impactful than using H2O2 at the studied conditions. Based on both avoided and generated impacts, H2O2 is the best option environmentally. In this case, the environmental impacts are more affected by an increase in treatment time rather than by an increase in the H2O2 concentration. It is thus best to opt for a higher concentration and the lowest treatment time possible for a significant ecotoxicity reduction. Electricity is a relevant parameter in all cases and its impact can be reduced in nearly all endpoint categories by opting for cleaner energy sources.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Peróxido de Hidrógeno , Estadios del Ciclo de Vida , Oxidantes , Oxidación-Reducción , Peróxidos , Rayos Ultravioleta , Aguas Residuales , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 850: 158073, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981591

RESUMEN

Microplastics have been investigated over the last decade as potential transport vectors for other pollutants. However, the specific role of plastic aging, in which plastics change their characteristics over time when exposed to environmental agents, has been overlooked. Therefore, sorption experiments were herein conducted using virgin and aged (by ozone treatment or rooftop weathering) microplastic particles of LDPE - low-density polyethylene, PET - poly(ethylene terephthalate), or uPVC - unplasticized poly(vinyl chloride). The organic micropollutants (OMPs) selected as sorbates comprise a diversified group of priority substances and contaminants of emerging concern, including pharmaceutical substances (florfenicol, trimethoprim, diclofenac, tramadol, citalopram, venlafaxine) and pesticides (alachlor, clofibric acid, diuron, pentachlorophenol), analyzed at trace concentrations (each ≤100 µg L-1). Sorption kinetics and equilibrium isotherms were obtained, as well as the confirmation that the aging degree of microplastics plays a major role in their sorption capacities. The results show an increased sorption of several OMPs on aged microplastics when compared to pristine samples, i.e. the sorption capacity increasing from one or two sorbed substances (maximum 3 µg g-1 per sorbate) up to nine after aging (maximum 10 µg g-1 per sorbate). The extent of sorption depends on the OMP, polymer and the effectiveness of the aging treatment. The modifications (e.g. in the chemical structure) between virgin and aged microplastics were linked to the increased sorption capacity of certain OMPs, allowing to better understand the different affinities observed. Additionally, phytotoxicity tests were performed to evaluate the mobility of the OMPs sorbed on the microplastics and the potential effects (on germination and early growth) of the combo on two species of plants (Lepidium sativum and Sinapis alba). These tests suggest low or no phytotoxicity effect under the conditions tested but indicate a need for further research on the behavior of microplastics on soil-plant systems.


Asunto(s)
Contaminantes Ambientales , Ozono , Pentaclorofenol , Plaguicidas , Tramadol , Cloruro de Vinilo , Contaminantes Químicos del Agua , Adsorción , Citalopram , Ácido Clofíbrico , Diclofenaco , Diurona , Etilenos , Microplásticos , Preparaciones Farmacéuticas , Plásticos/química , Polietileno , Polímeros , Suelo , Trimetoprim , Clorhidrato de Venlafaxina , Contaminantes Químicos del Agua/análisis
17.
Water Res ; 218: 118497, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35537252

RESUMEN

Antibiotics are often applied in aquaculture to prevent fish diseases. These substances can cause disturbances on receiving waters, when not properly eliminated from the aquaculture effluents. In this work, ozone (O3) was investigated as a possible oxidizing agent to remove fishery antibiotics from aquaculture effluents: florfenicol (FF), oxytetracycline (OTC), sulfadimethoxine (SDM), sulfamethoxazole (SMX), and trimethoprim (TMP). Batch experiments were performed using ultrapure water and aquaculture effluents spiked with a mixture of target antibiotics at relatively high concentrations (10 mg L-1 each). OTC, SMX and TMP were fully removed (< 30 min) regardless of the tested conditions, mainly by O3 direct attack. In contrast, FF was partially removed in 30 min (∼ 10 and 60%, in aquaculture effluents and ultrapure water, respectively), but only in the presence of hydroxyl radicals (HO•), the FF concentrations reaching levels below the detection limits in ultrapure water after 60 min. In the case of SDM, its degradation was highly influenced by the selected water matrix, but with removals always higher than 68%. In continuous-flow experiments applying more environmentally relevant antibiotic concentrations (100 ng L-1 each) and low O3 doses (1.5 mg L-1), ozonation highly removed (> 98%) all tested antibiotics from aquaculture effluents with a hydraulic retention time (HRT) of 10 min, except FF (68%). Although by-products were detected in treated samples, zebrafish (Danio rerio) embryotoxicity tests did not show a toxicity increase by applying this ozonation treatment. Ozonation is thus a possible solution to remove antibiotics from aquaculture effluents. Still, full-scale studies in aquaculture farms are needed, and generation of HO• may be favoured to readily oxidize the FF antibiotic.


Asunto(s)
Antibacterianos , Acuicultura , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Antibacterianos/toxicidad , Oxitetraciclina/toxicidad , Ozono/química , Sulfadimetoxina/toxicidad , Sulfametoxazol/toxicidad , Trimetoprim/toxicidad , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos , Pez Cebra
18.
Sci Total Environ ; 853: 158559, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36087660

RESUMEN

Cytostatic drugs are pharmaceuticals administered to cancer patients under chemotherapy. Their occurrence in surface waters has been reported worldwide, increasing environmental and human health concerns. This work addresses a question of worldwide interest: are these hazardous pharmaceuticals in surface waters a potential threat? For the first time, this study brings information on the presence of cytostatic drugs in Portuguese rivers. Furthermore, cutting-edge data on the occurrence of two cytostatic drugs is provided; up to the authors' best knowledge, flutamide and mycophenolate mofetil have never been monitored in worldwide surface waters. Nine out of thirteen cytostatic drugs were detected in Portuguese rivers. Despite bicalutamide being the cytostatic most frequently detected, the highest concentration was recorded for cyproterone (19 ± 3 ng/L). Three different scenarios were considered to estimate the risks from the exposure of humans to cytostatic drugs via surface waters. Two scenarios are associated with bathing practices in rivers, particularly in the spring and summer seasons (river beaches): (i) the exposure to cytostatic drugs by dermal contact with contaminated water and (ii) the exposure by accidental ingestion of contaminated water, which is less likely but also occurs. The third exposure scenario is related to (iii) the long-life consumption of drinking water produced from river water capture, under worst-case conditions, i.e. negligible degradation of cytostatic drugs at drinking water treatment plants. It was concluded that the third exposure context to cytostatics could represent a risk to children, if the highest concentration ever reported in the literature for cyclophosphamide in surface waters is considered. Still, attending to the carcinogenicity of some of these compounds (e.g., cyclophosphamide, chlorambucil, etoposide and tamoxifen), health risks might always be expected, regardless of the contamination level. Furthermore, health risks associated with synergic effects and/or long-term exposures cannot be ruled out, even for the remaining cytostatics/exposure contexts.


Asunto(s)
Citostáticos , Agua Potable , Contaminantes Químicos del Agua , Niño , Humanos , Citostáticos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Etopósido , Flutamida , Ácido Micofenólico , Ríos , Ciclofosfamida , Clorambucilo , Tamoxifeno , Ciproterona , Preparaciones Farmacéuticas
19.
J Hazard Mater ; 440: 129743, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963086

RESUMEN

Over the past decade there has been an increasing concern on the presence of cytostatics (also known as anticancer drugs) in natural waterbodies. The conventional wastewater treatments seem not to be effective enough to remove them, and therefore new processes must be considered. This work investigates the performance of ozonation (O3), catalytic ozonation (O3/Fe2+) and peroxone (O3/H2O2) processes, under dark or UV radiation conditions, for the degradation of cytostatics of worldwide concern. The degradation of bicalutamide (a representative of recalcitrant cytostatics) was firstly assessed in batch and then in a tubular column reactor (continuous flow mode runs) using a wastewater treatment plant (WWTP) secondary effluent. Bicalutamide removal ranged between 66 % (O3) and 98 % (O3/H2O2/UV) in continuous flow mode runs, the peroxone process being the most effective. The performance of these processes was then assessed against a mixture of twelve cytostatics of worldwide concern spiked in the WWTP effluent (25-350 ng/L). After treatment, seven cytostatics were completely removed, whereas the five most recalcitrant ones were eliminated to an extent of 8-92 % in O3/H2O2, and 44-95 % in O3/H2O2/UV. Phytotoxicity tests revealed a noticeable reduction in the effluent toxicity, demonstrating the feasibility of these processes in realistic conditions as tertiary treatment.


Asunto(s)
Citostáticos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Anilidas , Peróxido de Hidrógeno , Nitrilos , Oxidación-Reducción , Compuestos de Tosilo , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
20.
Environ Technol ; 32(9-10): 1031-41, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21882556

RESUMEN

Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.


Asunto(s)
Bacterias Aerobias/metabolismo , Detergentes/química , Detergentes/metabolismo , Oxígeno/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Peróxido de Hidrógeno/química , Residuos Industriales/prevención & control , Hierro/química , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA