RESUMEN
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Asunto(s)
Antioxidantes , Caniformia , Cetáceos , Evolución Molecular , Animales , Cetáceos/genética , Cetáceos/metabolismo , Caniformia/genética , Antioxidantes/metabolismo , Filogenia , Adaptación Fisiológica/genética , Especies Reactivas de Oxígeno/metabolismo , Selección GenéticaRESUMEN
Sex steroid concentrations modulate endometrial function and fertility in cattle. Our objective was to compare the post-estrus luminal transcriptome of cows that were exposed to contrasting concentrations of progesterone (P4) before luteolysis that displayed estrus and ovulated spontaneously. Cross-bred beef cows received either (1) a new CIDR and GnRH (day -9; high progesterone treatment; HP4; n = 16) or (2) a previously used CIDR, PGF2α, and GnRH (low progesterone treatment; LP4; n = 24). All cows received PGF2α at CIDR removal (day -2). Ovarian ultrasonography and blood collections were performed on days -9, -2, -0.5, and 0 (day of observed estrus), and days 4, 7, and 14 for measurement of ovarian structures, P4, and estradiol (E2). Luminal epithelial cells were collected using a cytology brush on days 4, 7, and 14 for RNAseq. On day -2, CL area and concentrations of P4 were greater, while on day -0.5, concentrations of E2 were decreased in HP4. Ovarian structures and hormonal concentrations were similar on days 4, 7, or 14 (P > 0.05). There were enriched pathways in HP4 related to activation and signaling of the innate immune system at day 4, downregulation in the network involved in the extracellular matrix remodeling at day 7, and exacerbated inflammatory response as well as differentiation and activation of macrophages at day 14 (Benjamini-Hochberg P-value ≤ 0.05). In conclusion, manipulation of pre-luteolysis sex steroid concentrations altered the post-estrus luminal transcriptome even though all cows showed estrus and ovulated spontaneously.
Asunto(s)
Luteólisis , Progesterona , Femenino , Bovinos , Animales , Progesterona/farmacología , Dinoprost/farmacología , Folículo Ovárico/fisiología , Transcriptoma , Sincronización del Estro/fisiología , Inseminación Artificial/veterinaria , Hormona Liberadora de Gonadotropina , Lactancia/fisiologíaRESUMEN
In brief: The concentration of progesterone through the estrous cycle modulates uterine function to affect the luminal metabolome. This paper reports that the dynamic changes in the bovine uterine luminal metabolome during diestrus are independent of the concentration of progesterone in the previous cycle. Abstract: In cattle, the concentration of sex steroids modulates uterine function, which is reflected in the composition of the luminal metabolome. Ultimately, the uterine luminal metabolome influences embryonic growth and development. Our objectives were (i) to compare the luminal metabolome 4, 7, and 14 days after estrus of cows that were exposed to greater (HP4; n = 16) vs lower (LP4; n = 24) concentrations of progesterone before displaying estrus and ovulating spontaneously and (ii) to identify changes in the luminal concentration of metabolites across these time points. Luminal epithelial cells and fluid were collected using a cytology brush, and gene expression and metabolite concentrations were assessed by RNAseq and targeted mass spectrometry, respectively. Metabolome profile was similar between treatments within each of days 4, 7, and 14 (false discovery rate (FDR): ≥ 0.1). Concentrations of 53 metabolites changed, independent of treatment, across the diestrus. Metabolites were mostly lipids (40 out 53) and the greatest concentrations were at day 14 (FDR: ≤ 0.1). On day 7, the concentration of putrescine and the gene expression of ODC1, PAOX, SLC3A2, and SAT1 increased (P ≤ 0.05). On day 14, the concentration of 3 ceramides, 4 glucosylceramides, and 12 sphingomyelins and the expression of SGMS2 were increased, in addition to the concentration of choline and 20 phosphatidylcholines. Collectively, the post-estrus concentration of luminal metabolites changed dynamically, independent of the concentration of sex steroids on the previous cycle, and the greatest magnitude changes were on day 14 when lipid metabolism was the most enriched pathway.
Asunto(s)
Estro , Progesterona , Femenino , Bovinos , Animales , Progesterona/farmacología , Progesterona/metabolismo , Útero/metabolismo , Ciclo Estral , Metaboloma , Sincronización del EstroRESUMEN
In cattle, starting 4-5 days after estrus, preimplantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early postestrus, endometrial function is regulated by sex steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. The first objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 days (D4) after estrus. The second objective was to discover luminal transcripts that predict pregnancy outcomes when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome was determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 nonpregnant). Progesterone concentration on D4 was associated positively (n = 182) and negatively (n = 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity, and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n = 22) and negatively (n = 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64%-96% and 44%-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and progesterone-independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.
Asunto(s)
Endometrio/metabolismo , Células Epiteliales/metabolismo , Progesterona/metabolismo , Transcriptoma/genética , Útero/metabolismo , Animales , Bovinos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Análisis por Conglomerados , Transferencia de Embrión , Desarrollo Embrionario , Endometrio/citología , Estro/genética , Femenino , Perfilación de la Expresión Génica/métodos , Embarazo , Progesterona/farmacología , RNA-Seq/métodos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Útero/citologíaRESUMEN
In cattle, uterine luminal fluid (ULF) is the main source of molecules that support embryo development and survival during the peri-implantation period. Our overarching hypothesis is that peri-estrus changes in uterine function, including ULF accumulation and absorption, are uneven among individuals, and affect ULF composition and fertility. Our objectives were (1) to characterize temporal and spatial changes in ULF volume, endometrial and luteal blood perfusion, endometrial and luteal size, and circulating progesterone concentrations during the peri-estrus period in beef heifers and (2) to associate such changes with the metabolite composition in the ULF, 4 days after estrus (d 0). Fourteen Bos indicus heifer that presented a PGF2α responsive CL received 500 µg PGF2α analog i.m. and were examined daily by rectal B-mode and pulse-wave color-Doppler ultrasonography until the fifth day after estrus (d 5). The composition of the ULF was analyzed by targeted mass spectrometry on d 4. Multivariate analyses clustered heifers according to ovarian, uterine, and hormonal variables in clusters A (n = 5) and B (n = 8 heifers). Concentrations of Pro, Ala, Leu, Gly, Val, Lys, Ile, Phe, Asp, Orn, Tyr, Arg, Trp, Suc, Cit, ADMA, the sum of essential Amino Acids (AA), sum of nonessential AA, sum of aromatic AA, and total AA were greater in cluster A (FDR ≤ 0.05). ULF volume dynamics and uterine, ovarian, and hormonal variables during the peri-estrus period presented a concerted variation among heifers within clusters, which was associated with the ULF composition 4 days after estrus.
Asunto(s)
Estro/metabolismo , Metaboloma , Ovario/metabolismo , Útero/metabolismo , Animales , Bovinos , Cuerpo Lúteo/irrigación sanguínea , Endometrio/irrigación sanguínea , Femenino , Progesterona/sangreRESUMEN
BACKGROUND: Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS: We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION: Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Asunto(s)
Delfines , Marsopas , Animales , Evolución Biológica , Ballenas , Secuencias Reguladoras de Ácidos Nucleicos , Regiones Promotoras Genéticas/genética , AceleraciónRESUMEN
In this study, a miniaturized liquid-liquid extraction (LLE) method for pre-concentration of Na, K, Ca, and Mg in crude oil was proposed. Analytes in crude oil were quantitatively extracted to the aqueous phase, followed by flame atomic absorption spectrometry (FAAS) determination. The following parameters were evaluated: type of extraction solution, sample mass, heating temperature and time, stirring time, centrifugation time, and the use of toluene and chemical demulsifier. Accuracy was evaluated by comparing the results obtained by the proposed method (LLE-FAAS) with those obtained after high-pressure microwave-assisted wet digestion and FAAS determination (reference values). No statistical difference was observed between the reference values and those using the optimized conditions for LLE-FAAS: 2.5 g of sample; 1000 µL of 2 mol L-1 HNO3, 50 mg L-1 of chemical demulsifier in 500 µL of toluene, 10 min of heating at 80 °C, 60 s of stirring, and 10 min of centrifugation. Relative standard deviations were lower than 6%. The limits of quantification (LOQ) were 1.2, 1.5, 5.0, and 0.50 µg g-1 for Na, K, Ca, and Mg, respectively. The proposed miniaturized LLE method presents several advantages, such as ease-of-use, high throughput (up 10 samples can be processed per 1 h), uses a high sample mass reaching low LOQs. In addition, the use of a diluted solution for extraction reduces the amount of reagents (around 40 times) and consequently laboratory residue generation, becoming an environmental friendly method. Suitable LOQs were achieved for analyte determination at low concentration even using a simple and low-cost sample preparation system (miniaturized LLE method) and a relatively low-cost determination technique (FAAS), avoiding the use of microwave ovens and more sensitivity techniques, which are required for routine analyses.
RESUMEN
The synthesis of monoacylglycerol (MAG) through the glycerolysis of ethyl ester mixture (biodiesel) was investigated in this study from linseed oil, low-cost alternative feedstock, using an alkaline catalyst with green reagent. The transesterification double step process (TDSP), reaction with ethanol to ethyl esters yielded 97%. In the glycerolysis reaction, the optimum operating condition was in a temperature of 130 °C with 5% sodium hydroxide (NaOH) in 1 : 5 biodiesel-glycerol and 12 h reaction time, in open reactor. The reaction conditions showed an interesting conversion and monoacylglycerol yield of 98% and 76%, respectively. The determination and characterization of reaction products was carried out by Gas Chromatography (GC) method, Infrared Spectroscopy (IR), Thermogravimetric Analysis (TGA) and Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H NMR).