Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36986704

RESUMEN

The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I- took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.

2.
Front Microbiol ; 14: 1094929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760503

RESUMEN

Introduction: Suspected infectious diseases located in difficult-to-access sites can be challenging due to the need for invasive procedures to isolate the etiological agent. Positron emission tomography (PET) is a non-invasive imaging technology that can help locate the infection site. The most widely used radiotracer for PET imaging (2-deoxy-2[18F] fluoro-D-glucose: [18F]FDG) shows uptake in both infected and sterile inflammation. Therefore, there is a need to develop new radiotracers able to specifically detect microorganisms. Methods: We tested two specific radiotracers: 2-deoxy-2-[18F]-fluoro-D-sorbitol ([18F]FDS) and 2-[18F]F-ρ-aminobenzoic acid ([18F]FPABA), and also developed a simplified alternative of the latter for automated synthesis. Clinical and reference isolates of bacterial and yeast species (19 different strains in all) were tested in vitro and in an experimental mouse model of myositis infection. Results and discussion: Non-lactose fermenters (Pseudomonas aeruginosa and Stenotrophomonas maltophilia) were unable to take up [18F]FDG in vitro. [18F]FDS PET was able to visualize Enterobacterales myositis infection (i.e., Escherichia coli) and to differentiate between yeasts with differential assimilation of sorbitol (i.e., Candida albicans vs. Candida glabrata). All bacteria and yeasts tested were detected in vitro by [18F]FPABA. Furthermore, [18F]FPABA was able to distinguish between inflammation and infection in the myositis mouse model (E. coli and Staphylococcus aureus) and could be used as a probe for a wide variety of bacterial and fungal species.

3.
Front Immunol ; 14: 1272570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841258

RESUMEN

Background: Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC. Materials and methods: A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake. Results: Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001). Conclusion: Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Antígeno B7-H1/metabolismo
4.
Int J Pharm ; 624: 122061, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35908633

RESUMEN

In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween® 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50 %. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of water-soluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25 % of RIS and PLGA-based implants loaded with 50 % of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.


Asunto(s)
Ácido Poliglicólico , Esquizofrenia , Portadores de Fármacos/química , Humanos , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Esquizofrenia/tratamiento farmacológico , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA