Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Endocrinol ; 67(1): 15-26, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34045365

RESUMEN

In obesity, high levels of TNF-α in the bone marrow microenvironment induce the bone marrow-mesenchymal stem cells (BM-MSCs) towards a pro-adipogenic phenotype. Here, we investigated the effect of obesity on the migratory potential of BM-MSCs and their fate towards the adipose tissues. BM-MSCs were isolated from male C57Bl/06 mice with high-fat diet-induced obesity. The migratory potential of the BM-MSCs, their presence in the subcutaneous (SAT) and the visceral adipose tissues (VAT), and the possible mechanisms involved were investigated. Obesity did not affect MSC content in the bone marrow but increased the frequency of MSCs in blood, SAT, and VAT. In these animals, the SAT adipocytes presented a larger area, without any changes in adipokine production or the Sdf-1α gene expression. In contrast, in VAT, obesity increased leptin and IL-10 levels but did not modify the size of the adipocytes. The BM-MSCs from obese animals presented increased spontaneous migratory activity. Despite the augmented expression of Cxcr4, these cells exhibited decreased migratory response towards SDF-1α, compared to that of BM-MSCs from lean mice. The PI3K-AKT pathway activation seems to mediate the migration of BM-MSCs from lean mice, but not from obese mice. Additionally, we observed an increase in the spontaneous migration of BM-MSCs from lean mice when they were co-cultured with BM-HCs from obese animals, suggesting a paracrine effect. We concluded that obesity increased the migratory potential of the BM-MSCs and induced their accumulation in VAT, which may represent an adaptive mechanism in response to chronic nutrient overload.


Asunto(s)
Grasa Intraabdominal/patología , Células Madre Mesenquimatosas/patología , Obesidad/patología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Grasa Intraabdominal/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Obesos , Comunicación Paracrina/efectos de los fármacos , Receptores CXCR4/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/patología , Factor de Necrosis Tumoral alfa/farmacología
2.
Front Immunol ; 12: 633540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295325

RESUMEN

Sepsis is one of the most common comorbidities observed in diabetic patients, associated with a deficient innate immune response. Recently, we have shown that glucagon possesses anti-inflammatory properties. In this study, we investigated if hyperglucagonemia triggered by diabetes might reduce the migration of neutrophils, increasing sepsis susceptibility. 21 days after diabetes induction by intravenous injection of alloxan, we induced moderate sepsis in Swiss-Webster mice through cecum ligation and puncture (CLP). The glucagon receptor (GcgR) antagonist des-his1-[Glu9]-glucagon amide was injected intraperitoneally 24h and 1h before CLP. We also tested the effect of glucagon on CXCL1/KC-induced neutrophil migration to the peritoneal cavity in mice. Neutrophil chemotaxis in vitro was tested using transwell plates, and the expression of total PKA and phospho-PKA was evaluated by western blot. GcgR antagonist restored neutrophil migration, reduced CFU numbers in the peritoneal cavity and improved survival rate of diabetic mice after CLP procedure, however, the treatment did no alter hyperglycemia, CXCL1/KC plasma levels and blood neutrophilia. In addition, glucagon inhibited CXCL1/KC-induced neutrophil migration to the peritoneal cavity of non-diabetic mice. Glucagon also decreased the chemotaxis of neutrophils triggered by CXCL1/KC, PAF, or fMLP in vitro. The inhibitory action of glucagon occurred in parallel with the reduction of CXCL1/KC-induced actin polymerization in neutrophils in vitro, but not CD11a and CD11b translocation to cell surface. The suppressor effect of glucagon on CXCL1/KC-induced neutrophil chemotaxis in vitro was reversed by pre-treatment with GcgR antagonist and adenylyl cyclase or PKA inhibitors. Glucagon also increased PKA phosphorylation directly in neutrophils in vitro. Furthermore, glucagon impaired zymosan-A-induced ROS production by neutrophils in vitro. Human neutrophil chemotaxis and adherence to endothelial cells in vitro were inhibited by glucagon treatment. According to our results, this inhibition was independent of CD11a and CD11b translocation to neutrophil surface or neutrophil release of CXCL8/IL-8. Altogether, our results suggest that glucagon may be involved in the reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. This work collaborates with better understanding of the increased susceptibility and worsening of sepsis in diabetics, which can contribute to the development of new effective therapeutic strategies for diabetic septic patients.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Susceptibilidad a Enfermedades/etiología , Glucagón/administración & dosificación , Neutrófilos/efectos de los fármacos , Sepsis/etiología , Sepsis/inmunología , Adulto , Animales , Movimiento Celular/inmunología , Quimiotaxis de Leucocito/efectos de los fármacos , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/microbiología , Femenino , Glucagón/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos , Neutrófilos/inmunología
3.
Front Oncol ; 9: 540, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275860

RESUMEN

During tumor development, the spleen acts as an extra-medullar reservoir of LY6Chi inflammatory monocytes, which can migrate toward tumor to differentiate into tumor-associated macrophage (TAMs), renewing the TAM population. In the tumor microenvironment, pro-inflammatory macrophages (M1) acquire anti-inflammatory and pro-tumor (M2) characteristics favoring tumor development. We previously demonstrated that lipoxins, a family of pro-resolving lipid mediators, restored in vitro the cytotoxic M1-like properties of TAMs. Objective: In this study, we have investigated in vivo the cellular mechanisms underlying the anti-tumor property of lipoxins. Methods: Fourteen days after inducing B16-F10 melanoma tumors, mice received one single dose of ATL-1 (1 µg/i.v.), a lipoxin A4 analog. After further 7 days, blood and bone-marrow were collected, tumors and spleens were removed, and TAMs and blood monocytes were isolated. Results: While the population of LY6Chi monocytes was increased in non-treated tumor-bearing mice, the treatment with ATL-1 diminished the population of LY6Chi monocytes in spleen, blood and bone marrow, decreasing macrophage infiltration into the tumor and reducing the M2 markers expression on TAMs. Importantly, those effects were accompanied by an impairment of tumor growth and improved survival of tumor-bearing mice. The data evidence the anti-tumor mechanism of ATL-1, by decreasing the availability of TAM-precursor monocytes and changing TAMs profile in vivo, impairing tumor progression. ATL-1 may become a new tool in cancer control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA