Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Physiol ; 597(16): 4387-4406, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31297821

RESUMEN

KEY POINTS: Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms. ABSTRACT: The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca2+ ]o and [Mg2+ ]o concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/fisiología , Aprendizaje/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Fenómenos Electrofisiológicos , Ratones , Fibras Nerviosas/fisiología , Plasticidad Neuronal , Sinapsis/fisiología
2.
Proc Natl Acad Sci U S A ; 113(46): 13221-13226, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799554

RESUMEN

At glutamatergic synapses, both long-term potentiation (LTP) and long-term depression (LTD) can be induced at the same synaptic activation frequency. Instructive signals determine whether LTP or LTD is induced, by modulating local calcium transients. Synapses maintain the ability to potentiate or depress over a wide frequency range, but it remains unknown how calcium-controlled plasticity operates when frequency variations alone cause differences in calcium amplitudes. We addressed this problem at cerebellar parallel fiber-Purkinje cell synapses, which can undergo LTD or LTP in response to 1-Hz and 100-Hz stimulation. We observed that high-frequency activation elicits larger spine calcium transients than low-frequency stimulation under all stimulus conditions, but, regardless of activation frequency, climbing fiber (CF) coactivation provides an instructive signal that further enhances calcium transients and promotes LTD. At both frequencies, buffering calcium prevents LTD induction and LTP results instead, identifying the enhanced calcium signal amplitude as the critical parameter contributed by the instructive CF signal. These observations show that it is not absolute calcium amplitudes that determine whether LTD or LTP is evoked but, instead, the LTD threshold slides, thus preserving the requirement for relatively larger calcium transients for LTD than for LTP induction at any given stimulus frequency. Cerebellar LTD depends on the activation of calcium/calmodulin-dependent kinase II (CaMKII). Using genetically modified (TT305/6VA and T305D) mice, we identified α-CaMKII inhibition upon autophosphorylation at Thr305/306 as a molecular event underlying the threshold shift. This mechanism enables frequency-independent plasticity control by the instructive CF signal based on relative, not absolute, calcium thresholds.


Asunto(s)
Calcio/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Animales , Señalización del Calcio/fisiología , Ratones Endogámicos C57BL , Ratones Mutantes , Sinapsis/fisiología
3.
Learn Mem ; 21(12): 662-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25403454

RESUMEN

Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar parallel fiber (PF) to Purkinje cell synapses, thus resembling CX546 effects described at hippocampal synapses. Using the fluorescent calcium indicator dye Oregon Green BAPTA-2 and an ultra-high-speed CCD camera, we also monitored calcium transients in Purkinje cell dendrites. In the presence of CX546 in the bath, PF-evoked calcium transients were enhanced and prolonged, suggesting that CX546 not only enhances synaptic transmission, but also boosts dendritic calcium signaling at cerebellar synapses. In contrast to previous observations in the hippocampus, however, CX546 applied during cerebellar recordings facilitates long-term depression (LTD) rather than LTP at PF synapses. These findings show that ampakines selectively modify the LTP-LTD balance depending on the brain area and type of synapse, and may provide tools for the targeted regulation of synaptic memories.


Asunto(s)
Cerebelo/efectos de los fármacos , Dioxoles/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Piperidinas/farmacología , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Cerebelo/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Técnicas de Placa-Clamp , Células de Purkinje/efectos de los fármacos , Células de Purkinje/fisiología , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos
4.
BioDrugs ; 37(5): 595-606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37490225

RESUMEN

Hemophilia is characterized by a deficiency in coagulation factors VIII or IX. The general standard of care for severe hemophilia is frequent intravenous recombinant or plasma-derived factor replacement to prevent bleeding. While this treatment is effective in preventing bleeding, frequent infusions are burdensome for patients. Nonadherence to the therapeutic regimen leaves people with hemophilia at risk for spontaneous and traumatic bleeds into joints as well as life-threatening bleeds such as intracranial hemorrhage. The chronicity of the disorder often leads to the formation of target joints, causing long-term pain and impairing mobility. As a monogenic disorder with well-understood genetics, hemophilia is an ideal disorder for implementing innovations in gene therapies. Indeed, recent approvals of two gene therapy products have the potential to shift the hemophilia treatment paradigm. Valoctocogene roxaparvovec and etranacogene dezaparvovec-drlb are gene therapies for hemophilia A and B, respectively. These therapies, given as a single intravenous infusion, may improve patients' quality of life, decreasing treatment burden and resulting in factor expression that virtually eliminates the need for factor replacement. Since both treatments involve viral vectors targeted to the liver, short- and long-term safety and efficacy monitoring involves monitoring liver enzymes to track liver health. Long-term monitoring of efficacy, durability of gene expression, and safety are ongoing. Gene therapy presents a promising new therapeutic option for patients with hemophilia and warrants continued innovation and investigation.


Asunto(s)
Hemofilia A , Hemofilia B , Humanos , Hemofilia A/terapia , Hemofilia A/tratamiento farmacológico , Hemofilia B/genética , Calidad de Vida , Factor VIII/genética , Hemorragia , Terapia Genética/métodos
5.
Expert Opin Biol Ther ; 23(12): 1173-1184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37962325

RESUMEN

INTRODUCTION: Congenital hemophilia B (HB) is an X-linked bleeding disorder resulting in Factor IX (FIX) deficiency and bleeding of variable severity. There is no cure for HB. Typical management consists of prophylactic intravenous (IV) recombinant or plasma-derived FIX infusions. Etranacogene dezaparvovec-drlb (Hemgenix, AMT-061) is an adeno-associated virus serotype 5 (AAV5) vector containing a codon-optimized Padua variant of the human F9 gene with a liver-specific promoter. Etranacogene dezaparvovec-drlb received FDA approval on 22 November 2022 for the treatment of HB in adult patients who use FIX prophylaxis therapy, have current or historical life-threatening hemorrhage, or have experienced repeated, serious spontaneous bleeding episodes. AREAS COVERED: This drug profile discusses the safety and efficacy of etranacogene dezaparvovec-drlb in patients with HB. EXPERT OPINION: Etranacogene dezaparvovec-drlb therapy results in stable and sustained expression of near-normal to normal FIX levels in patients with HB regardless of neutralizing antibodies to AAV5 up to a titer of 678. Its use has led to significant reduction in bleeding and FIX prophylaxis. Etranacogene dezaparvovec-drlb was well tolerated; however, 17% of patients required corticosteroid therapy for alanine aminotransferase (ALT) elevation. Etranacogene dezaparvovec-drlb therapy marks the beginning of an exciting era in HB treatment and opens questions regarding treatment longevity and long-term safety.


Asunto(s)
Hemofilia B , Adulto , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Factor IX/genética , Factor IX/uso terapéutico , Terapia Genética/métodos , Hemorragia/prevención & control
6.
Front Cell Neurosci ; 17: 1219270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545882

RESUMEN

Cyfip1, the gene encoding cytoplasmic FMR1 interacting protein 1, has been of interest as an autism candidate gene for years. A potential role in autism spectrum disorder (ASD) is suggested by its location on human chromosome 15q11-13, an instable region that gives rise to a variety of copy number variations associated with syndromic autism. In addition, the CYFIP1 protein acts as a binding partner to Fragile X Messenger Ribonucleoprotein (FMRP) in the regulation of translation initiation. Mutation of FMR1, the gene encoding FMRP, causes Fragile X syndrome, another form of syndromic autism. Here, in mice overexpressing CYFIP1, we study response properties of cerebellar Purkinje cells to activity of the climbing fiber input that originates from the inferior olive and provides an instructive signal in sensorimotor input analysis and plasticity. We find that CYFIP1 overexpression results in enhanced localization of the synaptic organizer neurexin 1 (NRXN1) at climbing fiber synaptic input sites on Purkinje cell primary dendrites and concomitant enhanced climbing fiber synaptic transmission (CF-EPSCs) measured using whole-cell patch-clamp recordings from Purkinje cells in vitro. Moreover, using two-photon measurements of GCaMP6f-encoded climbing fiber signals in Purkinje cells of intact mice, we observe enhanced responses to air puff stimuli applied to the whisker field. These findings resemble our previous phenotypic observations in a mouse model for the human 15q11-13 duplication, which does not extend to the Cyfip1 locus. Thus, our study demonstrates that CYFIP1 overexpression shares a limited set of olivo-cerebellar phenotypes as those resulting from an increased number of copies of non-overlapping genes located on chromosome 15q11-13.

7.
Biol Psychiatry Glob Open Sci ; 2(4): 450-459, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36324646

RESUMEN

Background: Patients with autism spectrum disorder often show altered responses to sensory stimuli as well as motor deficits, including an impairment of delay eyeblink conditioning, which involves integration of sensory signals in the cerebellum. Here, we identify abnormalities in parallel fiber (PF) and climbing fiber (CF) signaling in the mouse cerebellar cortex that may contribute to these pathologies. Methods: We used a mouse model for the human 15q11-13 duplication (patDp/+) and studied responses to sensory stimuli in Purkinje cells from awake mice using two-photon imaging of GCaMP6f signals. Moreover, we examined synaptic transmission and plasticity using in vitro electrophysiological, immunohistochemical, and confocal microscopic techniques. Results: We found that spontaneous and sensory-evoked CF-calcium transients are enhanced in patDp/+ Purkinje cells, and aversive movements are more severe across sensory modalities. We observed increased expression of the synaptic organizer NRXN1 at CF synapses and ectopic spread of these synapses to fine dendrites. CF-excitatory postsynaptic currents recorded from Purkinje cells are enlarged in patDp/+ mice, while responses to PF stimulation are reduced. Confocal measurements show reduced PF+CF-evoked spine calcium transients, a key trigger for PF long-term depression, one of several plasticity types required for eyeblink conditioning learning. Long-term depression is impaired in patDp/+ mice but is rescued on pharmacological enhancement of calcium signaling. Conclusions: Our findings suggest that this genetic abnormality causes a pathological inflation of CF signaling, possibly resulting from enhanced NRXN1 expression, with consequences for the representation of sensory stimuli by the CF input and for PF synaptic organization and plasticity.

8.
Neuroscience ; 462: 303-319, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32417339

RESUMEN

Mouse models of Autism Spectrum Disorder (ASD) have been interrogated using a variety of behavioral tests in order to understand the symptoms of ASD. However, the hallmark behaviors that are classically affected in ASD - deficits in social interaction and communication as well as the occurrence of repetitive behaviors - do not have direct murine equivalents. Thus, it is critical to identify the caveats that come with modeling a human disorder in mice. The most commonly used behavioral tests represent complex cognitive processes based on largely unknown brain circuitry. Motor impairments provide an alternative, scientifically rigorous approach to understanding ASD symptoms. Difficulties with motor coordination and learning - seen in both patients and mice - point to an involvement of the cerebellum in ASD pathology. This brain area supports types of motor learning that are conserved throughout vertebrate evolution, allowing for direct comparisons of functional abnormalities between humans with autism and ASD mouse models. Studying simple motor behaviors provides researchers with clearly interpretable results. We describe and evaluate methods used on mouse behavioral assays designed to test for social, communicative, perseverative, anxious, nociceptive, and motor learning abnormalities. We comment on the effectiveness and validity of each test based on how much information its results give, as well as its relevance to ASD, and will argue for an inclusion of cerebellum-supported motor behaviors in the phenotypic description of ASD mouse models. LAY SUMMARY: Mouse models of Autism Spectrum Disorder help us gain insight about ASD symptoms in human patients. However, there are many differences between mice and humans, which makes interpreting behaviors challenging. Here, we discuss a battery of behavioral tests for specific mouse behaviors to explore whether each test does indeed evaluate the intended measure, and whether these tests are useful in learning about ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Escala de Evaluación de la Conducta , Cerebelo , Modelos Animales de Enfermedad , Humanos , Ratones
9.
Nat Commun ; 5: 5586, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25418414

RESUMEN

A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.


Asunto(s)
Trastorno Autístico/fisiopatología , Parpadeo/fisiología , Variaciones en el Número de Copia de ADN/genética , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Animales , Cerebelo/fisiología , Modelos Animales de Enfermedad , Electrofisiología , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Plasticidad Neuronal/genética , Técnicas de Placa-Clamp , Células de Purkinje/fisiología , Sinapsis/fisiología
10.
Cardiovasc Diagn Ther ; 8(3): 403-404, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30057887
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA