Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 317-345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941605

RESUMEN

Regionalized immune surveillance relies on the concerted efforts of diverse memory T cell populations. Of these, tissue-resident memory T (TRM) cells are strategically positioned in barrier tissues, where they enable efficient frontline defense against infections and cancer. However, the long-term persistence of these cells has been implicated in a variety of immune-mediated pathologies. Consequently, modulating TRM cell populations represents an attractive strategy for novel vaccination and therapeutic interventions against tissue-based diseases. Here, we provide an updated overview of TRM cell heterogeneity and function across tissues and disease states. We discuss mechanisms of TRM cell-mediated immune protection and their potential contributions to autoimmune disorders. Finally, we examine how TRM cell responses might be durably boosted or dampened for therapeutic gain.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Humanos , Animales , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Especificidad de Órganos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vigilancia Inmunológica
2.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
3.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35882933

RESUMEN

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Asunto(s)
Memoria Inmunológica , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426691

RESUMEN

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Plasticidad de la Célula/inmunología , Microambiente Celular/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos CD/inmunología , Linfocitos T CD8-positivos/citología , Femenino , Cadenas alfa de Integrinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/metabolismo
5.
Immunity ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39406245

RESUMEN

Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor ß (TGF-ß) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-ß-independent tissue residency program in the liver and synergizing with TGF-ß to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.

6.
Immunity ; 56(7): 1664-1680.e9, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392736

RESUMEN

Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.


Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Ratones , Animales , Linaje de la Célula , Memoria Inmunológica
7.
Immunity ; 56(6): 1320-1340.e10, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315535

RESUMEN

CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Ensamble y Desensamble de Cromatina , Cromatina , Diferenciación Celular , Epigénesis Genética
8.
Nat Immunol ; 19(2): 183-191, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29311695

RESUMEN

Although tissue-resident memory T cells (TRM cells) are critical in fighting infection, their fate after local pathogen re-encounter is unknown. Here we found that skin TRM cells engaged virus-infected cells, proliferated in situ in response to local antigen encounter and did not migrate out of the epidermis, where they exclusively reside. As a consequence, secondary TRM cells formed from pre-existing TRM cells, as well as from precursors recruited from the circulation. Newly recruited antigen-specific or bystander TRM cells were generated in the skin without displacement of the pre-existing TRM cell pool. Thus, pre-existing skin TRM cell populations are not displaced after subsequent infections, which enables multiple TRM cell specificities to be stably maintained within the tissue.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Piel/inmunología , Animales , Proliferación Celular/fisiología , Herpes Simple/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
Immunity ; 51(3): 418-420, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533052

RESUMEN

Factors regulating the differentiation of tissue-resident memory T (TRM) cells and tumor-infiltrating lymphocytes (TILs) are incompletely understood. In this issue of Immunity, Li et al. identify Bhlhe40 as a transcriptional regulator of CD8+ TRM cell and TIL persistence and activity by orchestrating metabolic and epigenetic programming.


Asunto(s)
Memoria Inmunológica , Factores de Transcripción , Linfocitos T CD8-positivos , Linfocitos Infiltrantes de Tumor , Control Social Formal
10.
Trends Immunol ; 43(4): 280-282, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35272933

RESUMEN

Efficient generation of tissue-resident memory T (TRM) cells is essential for long-lived immune protection in barrier tissues. Peng et al. now show that the costimulatory molecule ICOS enhances CD8+ TRM cell lodgment by promoting early tissue retention.


Asunto(s)
Internado y Residencia , Vendajes , Linfocitos T CD8-positivos/inmunología , Humanos , Memoria Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles , Factores de Transcripción
11.
Nature ; 566(7745): E10, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742076

RESUMEN

Panel j was inadvertently labelled as panel k in the caption to Fig. 4. Similarly, 'Fig. 4k' should have been 'Fig. 4j' in the sentence beginning 'TNF-α-deficient gBT-I cells were…'. In addition, the surname of author Umaimainthan Palendira was misspelled 'Palendria'. These errors have been corrected online.

12.
Nature ; 565(7739): 366-371, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598548

RESUMEN

The immune system can suppress tumour development both by eliminating malignant cells and by preventing the outgrowth and spread of cancer cells that resist eradication1. Clinical and experimental data suggest that the latter mode of control-termed cancer-immune equilibrium1-can be maintained for prolonged periods of time, possibly up to several decades2-4. Although cancers most frequently originate in epithelial layers, the nature and spatiotemporal dynamics of immune responses that maintain cancer-immune equilibrium in these tissue compartments remain unclear. Here, using a mouse model of transplantable cutaneous melanoma5, we show that tissue-resident memory CD8+ T cells (TRM cells) promote a durable melanoma-immune equilibrium that is confined to the epidermal layer of the skin. A proportion of mice (~40%) transplanted with melanoma cells remained free of macroscopic skin lesions long after epicutaneous inoculation, and generation of tumour-specific epidermal CD69+ CD103+ TRM cells correlated with this spontaneous disease control. By contrast, mice deficient in TRM formation were more susceptible to tumour development. Despite being tumour-free at the macroscopic level, mice frequently harboured melanoma cells in the epidermal layer of the skin long after inoculation, and intravital imaging revealed that these cells were dynamically surveyed by TRM cells. Consistent with their role in melanoma surveillance, tumour-specific TRM cells that were generated before melanoma inoculation conferred profound protection from tumour development independently of recirculating T cells. Finally, depletion of TRM cells triggered tumour outgrowth in a proportion (~20%) of mice with occult melanomas, demonstrating that TRM cells can actively suppress cancer progression. Our results show that TRM cells have a fundamental role in the surveillance of subclinical melanomas in the skin by maintaining cancer-immune equilibrium. As such, they provide strong impetus for exploring these cells as targets of future anticancer immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Homeostasis/inmunología , Memoria Inmunológica/inmunología , Melanoma Experimental/inmunología , Neoplasias Cutáneas/inmunología , Piel/inmunología , Anciano , Animales , Progresión de la Enfermedad , Epidermis/inmunología , Epidermis/patología , Femenino , Humanos , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Trasplante de Neoplasias , Piel/patología , Neoplasias Cutáneas/patología
13.
Nano Lett ; 24(28): 8626-8633, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38975638

RESUMEN

Long-range, terrestrial quantum networks require high-brightness single-photon sources emitting in the telecom C-band for maximum transmission rates. For solid-state quantum emitters, the underlying pumping process, i.e., coherent or incoherent excitation schemes, impacts several photon properties such as photon indistinguishability, single-photon purity, and photon number coherence. These properties play a major role in quantum communication applications, the latter in particular for quantum cryptography. Here, we present a versatile telecom C-band single-photon source that is operated coherently and incoherently using two complementary pumping schemes. The source is based on a quantum dot coupled to a circular Bragg grating cavity, whereas coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation). In this way, high end-to-end-efficiencies (ηend) of 5.36% (6.09%) are achieved simultaneously with a small multiphoton contribution g(2)(0) of 0.076 ± 0.001 [g(2)(0) of 0.069 ± 0.001] for coherent (incoherent) operation.

14.
Nano Lett ; 24(4): 1184-1190, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230641

RESUMEN

Integration of on-demand quantum emitters into photonic integrated circuits (PICs) has drawn much attention in recent years, as it promises a scalable implementation of quantum information schemes. A central property for several applications is the indistinguishability of the emitted photons. In this regard, GaAs quantum dots (QDs) obtained by droplet etching epitaxy show excellent performances, making the realization of these QDs into PICs highly appealing. Here, we show the first implementation in this direction, realizing the key passive elements needed in PICs, i.e., single-mode waveguides (WGs) with integrated GaAs-QDs and beamsplitters. We study the statistical distribution of wavelength, linewidth, and decay time of the excitonic line, as well as the quantum optical properties of individual emitters under resonant excitation. We achieve single-photon purities as high as 1 - g(2)(0) = 0.929 ± 0.009 and two-photon interference visibilities of up to VTPI = 0.953 ± 0.032 for consecutively emitted photons.

15.
EMBO J ; 39(2): e103637, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31803974

RESUMEN

Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Neoplasias/terapia , Proteína Tirosina Fosfatasa no Receptora Tipo 2/fisiología , Receptor ErbB-2/fisiología , Receptores de Antígenos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Presentación de Antígeno/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal
16.
Eur J Immunol ; 53(11): e2250060, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36597841

RESUMEN

Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas , Humanos , Memoria Inmunológica , Sistema Inmunológico , Vacunación
17.
Am J Gastroenterol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940439

RESUMEN

INTRODUCTION: Gut-directed hypnotherapy (GDH) treats irritable bowel syndrome (IBS), but its accessibility is limited. This problem may be overcome by digital delivery. The aim of this study was to perform a randomized control trial comparing the efficacy of a digitally delivered program with and without GDH in IBS. METHODS: Adults with IBS were randomized to a 42-session daily digital program with the GDH Program (Nerva) or without (Active Control). Questionnaires were completed to assess gastrointestinal symptoms through IBS Symptom Severity Scale (IBS-SSS), quality of life, and psychological symptoms (Depression Anxiety and Stress Scale-21) at regular intervals during the program and 6 months following the conclusion on the intervention. The primary end point was the proportion of participants with ≥50-point decrease in IBS-SSS between the interventions at the end of the program. RESULTS: Of 240/244 randomized participants, 121 received GDH Program-the median age 38 (range 20-65) years, 90% female, IBS-SSS 321 (interquartile range 273-367)-and 119 Active Control-36 (21-65), 91% female, IBS-SSS 303 (255-360). At program completion, 81% met the primary end point with GDH Program vs 63% Active Control ( P = 0.002). IBS-SSS was median 208 (interquartile range 154-265) with GDH and 244 (190-308) with control ( P = 0.004), 30% reduction in pain was reported by 71% compared with 35% ( P < 0.001), and IBS quality of life improved by 14 (6-25) compared with 7 (1-15), respectively ( P < 0.001). Psychological status improved similarly in both groups. DISCUSSION: A digitally delivered GDH Program provided to patients with IBS was superior to the active control, with greater improvement in both gastrointestinal symptoms and quality of life and provides an equitable alternative to face-to-face behavioral strategies.

18.
Cell Biol Int ; 48(5): 665-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420868

RESUMEN

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hemodinámica , Estrés Mecánico , Células Cultivadas
19.
BMC Urol ; 24(1): 72, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532371

RESUMEN

BACKGROUND: Consolidative resection or cytoreductive radical prostatectomy (CRP) may benefit men with non-organ confined prostate cancer. We report the safety, feasibility, and outcomes of robot-assisted laparoscopic CRP using a single-port (SP) or multi-port (MP) platform. METHODS: We reviewed consecutive men with clinical node positive or metastatic castrate-sensitive prostate cancer who underwent IRB-approved CRP and extended pelvic lymph node dissection using the da Vinci SP or MP Surgical Systems (Intuitive Surgical, Sunnyvale, CA) from 2015-2022. Perioperative data and Clavien-Dindo 90-day complications were recorded. RESULTS: Twenty-four men with a median age of 61 (IQR 56-69) years and prostate-specific antigen of 32.1 (IQR 21.9-62.3) ng/mL were included. Clinical N1, M1, or N1 + M1 disease were detected in 8 (33%), 9 (38%), 7 (29%) patients, respectively. There was no difference in positive margins, 41% vs. 29% (P = 0.67), lymph node yield, 21 (IQR 14-28) vs. 20 (IQR 13.5-21) nodes (P = 0.31), or estimated blood loss, 150 mL (IQR 100-200) vs. 50 mL (IQR 50-125) (P = 0.06), between the MP and SP cohorts, respectively. Hospital length of stay was significantly shorter for the SP group, same-day discharge (IQR 0-0), compared to MP, 1-day (IQR 1-1), P < 0.001. One grade III bowel obstruction and lymphocele occurred in the MP cohort. No major complications occurred in the SP cohort. CONCLUSION: Robot-assisted laparoscopic CRP is safe and feasible for select men with advanced castrate-sensitive prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Robótica , Anciano , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos de Citorreducción , Estudios de Factibilidad , Prostatectomía , Neoplasias de la Próstata/patología
20.
Nano Lett ; 23(14): 6574-6580, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432064

RESUMEN

Triggered, indistinguishable single photons are crucial in various quantum photonic implementations. Here, we realize a novel n+-i-n++ diode structure embedding semiconductor quantum dots: the gated device enables spectral tuning of the transitions and deterministic control of the charged states. Blinking-free single-photon emission and high two-photon indistinguishability are observed. The line width's temporal evolution is investigated across over 6 orders of magnitude time scales, combining photon-correlation Fourier spectroscopy, high-resolution photoluminescence spectroscopy, and two-photon interference (visibility of VTPI,2ns = (85.8 ± 2.2)% and VTPI,9ns = (78.3 ± 3.0)%). Most of the dots show no spectral broadening beyond ∼9 ns time scales, and the photons' line width ((420 ± 30) MHz) deviates from the Fourier-transform limit by a factor of 1.68. The combined techniques verify that most dephasing mechanisms occur at time scales ≤2 ns, despite their modest impact. The presence of n-doping implies higher carrier mobility, enhancing the device's appeal for high-speed tunable, high-performance quantum light sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA