RESUMEN
While many genetic variants have been associated with risk for human diseases, how these variants affect gene expression in various cell types remains largely unknown. To address this gap, the DICE (database of immune cell expression, expression quantitative trait loci [eQTLs], and epigenomics) project was established. Considering all human immune cell types and conditions studied, we identified cis-eQTLs for a total of 12,254 unique genes, which represent 61% of all protein-coding genes expressed in these cell types. Strikingly, a large fraction (41%) of these genes showed a strong cis-association with genotype only in a single cell type. We also found that biological sex is associated with major differences in immune cell gene expression in a highly cell-specific manner. These datasets will help reveal the effects of disease risk-associated genetic polymorphisms on specific immune cell types, providing mechanistic insights into how they might influence pathogenesis (https://dice-database.org).
Asunto(s)
Regulación de la Expresión Génica/inmunología , Genotipo , Polimorfismo de Nucleótido Simple/inmunología , Sitios de Carácter Cuantitativo/inmunología , Caracteres Sexuales , Adolescente , Adulto , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Therapies that boost the anti-tumor responses of cytotoxic T lymphocytes (CTLs) have shown promise; however, clinical responses to the immunotherapeutic agents currently available vary considerably, and the molecular basis of this is unclear. We performed transcriptomic profiling of tumor-infiltrating CTLs from treatment-naive patients with lung cancer to define the molecular features associated with the robustness of anti-tumor immune responses. We observed considerable heterogeneity in the expression of molecules associated with activation of the T cell antigen receptor (TCR) and of immunological-checkpoint molecules such as 4-1BB, PD-1 and TIM-3. Tumors with a high density of CTLs showed enrichment for transcripts linked to tissue-resident memory cells (TRM cells), such as CD103, and CTLs from CD103hi tumors displayed features of enhanced cytotoxicity. A greater density of TRM cells in tumors was predictive of a better survival outcome in lung cancer, and this effect was independent of that conferred by CTL density. Here we define the 'molecular fingerprint' of tumor-infiltrating CTLs and identify potentially new targets for immunotherapy.
Asunto(s)
Adenocarcinoma/inmunología , Carcinoma de Células Escamosas/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Memoria Inmunológica/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Citotóxicos/inmunología , Adenocarcinoma/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Carcinoma de Células Escamosas/mortalidad , Femenino , Perfilación de la Expresión Génica , Receptor 2 Celular del Virus de la Hepatitis A/genética , Humanos , Inmunoterapia , Cadenas alfa de Integrinas/genética , Neoplasias Pulmonares/mortalidad , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Receptores de Antígenos de Linfocitos T/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Tasa de Supervivencia , Linfocitos T Citotóxicos/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genéticaRESUMEN
Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO's, AdVirgo's and KAGRA's fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (-3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections.
RESUMEN
Tumor-associated macrophages (TAMs) drive the protumorigenic responses and facilitate tumor progression via matrix remodeling, angiogenesis, and immunosuppression by interacting with extracellular matrix proteins via integrins. However, the expression dynamics of integrin and its correlation with TAM functional programming in the tumors remain unexplored. In this study, we examined surface integrins' role in TAM recruitment and phenotypic programming in a 4T1-induced murine breast tumor model. Our findings show that integrin α5ß1 is upregulated in CD11b+Ly6Chi monocytes in the bone marrow and blood by day 10 after tumor induction. Subsequent analysis revealed elevated integrin α5ß1 expression on tumor-infiltrating monocytes (Ly6ChiMHC class II [MHCII]low) and M1 TAMs (F4/80+Ly6ClowMHCIIhi), whereas integrin αvß3 was predominantly expressed on M2 TAMs (F4/80+Ly6ClowMHCIIlow), correlating with higher CD206 and MERTK expression. Gene profiling of cells sorted from murine tumors showed that CD11b+Ly6G-F4/80+α5+ TAMs had elevated inflammatory genes (IL-6, TNF-α, and STAT1/2), whereas CD11b+Ly6G-F4/80+αv+ TAMs exhibited a protumorigenic phenotype (IL-10, Arg1, TGF-ß, and STAT3/6). In vitro studies demonstrated that blocking integrin α5 and αv during macrophage differentiation from human peripheral blood monocytes reduced cell spreading and expression of CD206 and CD163 in the presence of specific matrix proteins, fibronectin, and vitronectin. Furthermore, RNA sequencing data analysis (GEO dataset: GSE195857) from bone marrow-derived monocytes and TAMs in 4T1 mammary tumors revealed differential integrin α5 and αv expression and their association with FAK and SRC kinase. In line with this, FAK inhibition during TAM polarization reduced SRC, STAT1, and STAT6 phosphorylation. In conclusion, these findings underscore the crucial role of integrins in TAM recruitment, polarization, and reprogramming in tumors.
Asunto(s)
Neoplasias de la Mama , Integrina alfa5beta1 , Integrina alfaVbeta3 , Macrófagos Asociados a Tumores , Animales , Ratones , Integrina alfa5beta1/metabolismo , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Integrina alfaVbeta3/metabolismo , Línea Celular Tumoral , Humanos , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Reprogramación Celular , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.
Asunto(s)
Sistema Biliar , Mutación , Pez Cebra , Pez Cebra/genética , Pez Cebra/embriología , Animales , Mutación/genética , Sistema Biliar/embriología , Sistema Biliar/metabolismo , Fenotipo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Cell attachment to the extracellular matrix significantly impacts the integrity of tissues and human health. The integrin α5ß1 is a heterodimer of α5 and ß1 subunits and has been identified as a crucial modulator in several human carcinomas. Integrin α5ß1 significantly regulates cell proliferation, angiogenesis, inflammation, tumor metastasis, and invasion. This regulatory role of integrin α5ß1 in tumor metastasis makes it an appealing target for cancer therapy. The majority of the drugs targeting integrin α5ß1 are limited only to clinical trials. In our study, we have performed 94287 compounds screening to determine potential drugs against α5ß1 integrin. We have used ATN-161 as a reference and employed combined bioinformatic methodologies, including molecular modelling, virtual screening, MM-GBSA, cell-line cytotoxicity prediction, ADMET, Density Functional Theory (DFT), Non-covalent Interactions (NCI) and molecular simulation, to identify putative integrin α5ß1 inhibitors. We found Taxifolin, PD133053, and Acebutolol that possess inhibitory activity against α5ß1 integrin and could act as effective drug for the cancer treatment. Taxifolin, PD133053, and Acebutolol exhibited excellent binding to the druggable pocket of integrin α5ß1, and also maintained a unique binding mechanism with extra hydrophobic contacts at molecular level. Overall, our study gives new pharmacological candidates that may act as a potential drug against integrin α5ß1.
Asunto(s)
Antineoplásicos , Integrina alfa5beta1 , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Integrina alfa5beta1/metabolismo , Integrina alfa5beta1/antagonistas & inhibidores , Modelos Moleculares , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Quercetina/farmacología , Quercetina/análogos & derivados , Quercetina/químicaRESUMEN
INTRODUCTION: Flexion deformity of the knee is a common complication following recurrent haemarthrosis in persons with haemophilia (PWH) on episodic factor replacement therapy, restricting independent mobility. There is limited literature on the comprehensive management of this condition. This report provides the outcome of a staged multidisciplinary approach for the correction of knee flexion deformity (KFD) even in limited resource settings. PATIENTS AND METHODS: The data of 49 consecutive PWH who were treated for KFD were analysed. The approach included graded physical therapy (PT), followed by serial casting and/or mobilisation under anaesthesia (MUA). MUA was done in carefully selected knees. Surgical correction was opted when non-surgical methods failed. RESULTS: Of the 49 patients (55 knees), with a median KFD of 40 degrees (range: 10-90), 26/55 (47%) were corrected by graded PT. With serial casting, 9/19 (47%) knees had their KFD corrected. MUA was done for 11 knees of which five achieved correction (45%). Surgical correction was required for only seven knees (12.7%). Following this approach, KFD improved from 40 degrees (range: 10-90) to 15 degrees (range: 0-40), with only minor loss of flexion from 105 (range: 60-155) to 90 degrees (range: 30-150). Out of 55 KFD, 46 (83.6%) KFD were corrected; non-surgical, 39 (70.9%) and surgery, seven (12.7%). The remaining patients (nine KFD; 16.4%) were able to achieve their functional goal despite not meeting the correction criteria. CONCLUSION: This study shows that in PWH, functionally significant KFD correction can be achieved in about 71%, through non-surgical methods, even without prophylactic factor replacement.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Hemofilia A , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Resultado del Tratamiento , Estudios Retrospectivos , Articulación de la Rodilla , Rango del Movimiento ArticularRESUMEN
Junin virus consists of ribonucleic acid as the genome and is responsible for a rapidly changing tendency of the virus. The virus is accountable for ailments in the human body and causes Argentine Haemorrhagic Fever (AHF). The infection is may be transmitted through contact between an infected animal/host and a person, and later between person to person. Prevention of outbreaks of AHF in humans can be a tough practice, as their occurrence is infrequent and unpredictable. In this review, recent information from the past 5 years available on the Junin virus including the risk of its emergence, infectious agents, its pathogenesis in humans, available diagnostic and therapeutic approaches, and disease management has been summarised. Altogether, this article would be highly significant in understanding the mechanistic basis behind virus interaction and other processes during the life cycle. Currently, no specific therapeutic options are available to treat the Junin virus infection. The information covered in this review could be important for finding possible treatment options for Junin virus infections.
Asunto(s)
Fiebre Hemorrágica Americana , Virus Junin , Animales , Humanos , Virus Junin/genética , Fiebre Hemorrágica Americana/diagnóstico , Fiebre Hemorrágica Americana/patologíaRESUMEN
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Asunto(s)
Disfunción Cognitiva , Insulinas , Animales , Conejos , Giro Dentado/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Factores de Transcripción/metabolismo , Cognición , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Insulinas/metabolismoRESUMEN
Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.
Asunto(s)
Cobre , Azul de Metileno , Rodaminas , Sulfuros , Rodaminas/química , Azul de Metileno/química , Sulfuros/química , Cobre/química , Catálisis , Compuestos de Estaño/química , Calor , Contaminantes Químicos del Agua/químicaRESUMEN
Oxystelma esculentum has been used as a folk medicine to treat jaundice, throat infections, and skin problems. In the current study, the bone fracture-healing properties of a flavonoid-enriched fraction (Oxy50-60F) of O. esculentum were investigated in Swiss mice using a drill-hole injury model. Oxy50-60F (1 mg/kg/day, 5 mg/kg/day, and 10 mg/kg/day) was administered orally (from the next day) after a 0.6 mm drill-hole injury in mice femur mid-diaphysis for 7 days and 14 days. Parathyroid hormone (40 µg/kg; 5 times/week) was given subcutaneously as the positive control. Confocal imaging for bone regeneration, micro-architecture of femur bones, ex vivo mineralization, hematoxyline and eosin staining, measurement of reactive oxygen species, and gene expression of osteogenic and anti-inflammatory genes were studied. Quercetin, kaempferol, and isorhamnetin glycosides were identified in the active fraction using mass spectrometry techniques. Our results confirm that Oxy50-60F treatment promotes fracture healing and callus formation at drill-hole sites and stimulates osteogenic and anti-inflammatory genes. Oxy50-60F administration to fractured mice exhibited significantly better micro-CT parameters in a dose-dependent manner and promoted nodule mineralization at days 7 and 14 post-injury. Oxy50-60F also prevents ROS generation by increasing expression of the SOD2 enzyme. Overall, this study reveals that Oxy50-60F has bone regeneration potential in a cortical bone defect model, which supports its use in delayed-union and non-union fracture cases.
Asunto(s)
Curación de Fractura , Fracturas Óseas , Ratones , Animales , Flavonoides/farmacología , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fracturas Óseas/tratamiento farmacológico , AntiinflamatoriosRESUMEN
Naturally, O-prenylation of 3-aryl-benzopyrans enhances the biological activities of these compounds. In this study, substituted O-prenylated 3-aryl-benzopyrans (21a-c, 22a-c, 23a-c, 24a-c 25a-c, 27 and 28) were synthesized and evaluated for osteogenic and cancer cell growth inhibitory potentials using cell-based in-vitro models. Amongst the target compounds, 21a, 22b, 23c, and 24c showed good osteogenic activity at 1 pM concentration, whereas 26 and 27 showed osteogenic activity at 100pM and 10nM, respectively. Compounds 21a, 22b, and 23c showed good cancer cell growth inhibitory activity against breast cancer cells (MCF-7 and MBA-231). Amongst active compounds, 27 presented the best anticancer activity against MDAMB-231 cells with selectivity towards non-cancerous cells [IC50 3.76 µM with SI 13.3]. The in-silico study of compounds showed their structural complementarities with the LBD of estrogen receptors and compliance with dragability parameters.
RESUMEN
Prematurely-born infants cared for in the neonatal units suffer from memory and learning deficits. Prematurity diminishes neurogenesis and synaptogenesis in the hippocampal dentate gyrus (DG). This dysmaturation of neurons is attributed to elevated PSD95, NMDR2A, and IGF1 levels. Since oestrogen treatment plays key roles in the development and plasticity of DG, we hypothesized that 17ß-estradiol (E2) treatment would ameliorate neurogenesis and synaptogenesis in the DG, reversing cognitive deficits in premature newborns. Additionally, E2-induced recovery would be mediated by IGF1 signalling. These hypotheses were tested in a rabbit model of prematurity and nonmaternal care, in which premature kits were gavage-fed and reared by laboratory personnel. We compared E2- and vehicle-treated preterm kits for morphological, molecular, and behavioural parameters. We also treated kits with oestrogen degrader, RAD1901, and assessed IGF1 signalling. We found that E2 treatment increased the number of Tbr2+ and DCX+ neuronal progenitors and increased the density of glutamatergic synapses in the DG. E2 treatment restored PSD95 and NMDAR2A levels and cognitive function in preterm kits. Transcriptomic analyses showed that E2 treatment contributed to recovery by influencing interactions between IGF1R and neurodegenerative, as well as glutamatergic genes. ERα expression was reduced on completion of E2 treatment at D7, followed by D30 elevation. E2-induced fluctuation in ERα levels was associated with a reciprocal elevation in IGF1/2 expression at D7 and reduction at D30. ERα degradation by RAD1901 treatment enhanced IGF1 levels, suggesting ERα inhibits IGF1 expression. E2 treatment alleviates the prematurity-induced maldevelopment of DG and cognitive dysfunctions by regulating ERα and IGF1 levels.
Asunto(s)
Receptor alfa de Estrógeno , Estrógenos , Animales , Conejos , Tetrahidronaftalenos , Receptores de Estrógenos , Homólogo 4 de la Proteína Discs Large/genética , Giro DentadoRESUMEN
BACKGROUND: RhoG is a multifaceted member of the Rho family of small GTPases, sharing the highest sequence identity with the Rac subfamily members. It acts as a molecular switch, when activated, plays a central role in regulating the fundamental processes in immune cells, such as actin-cytoskeleton dynamics, transendothelial migration, survival, and proliferation, including immunological functions (e.g., phagocytosis and trogocytosis) during inflammatory responses. METHOD: We have performed a literature review based on published original and review articles encompassing the significant effect of RhoG on immune cell functions from central databases, including PubMed and Google Scholar. RESULTS AND CONCLUSIONS: Recently published data shows that the dynamic expression of different transcription factors, non-coding RNAs, and the spatiotemporal coordination of different GEFs with their downstream effector molecules regulates the cascade of Rho signaling in immune cells. Additionally, alterations in RhoG-specific signaling can lead to physiological, pathological, and developmental adversities. Several mutations and RhoG-modulating factors are also known to pre-dispose the downstream signaling with abnormal gene expression linked to multiple diseases. This review focuses on the cellular functions of RhoG, interconnecting different signaling pathways, and speculates the importance of this small GTPase as a prospective target against several pathological conditions.
Asunto(s)
Transducción de Señal , Proteínas de Unión al GTP rho , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal/fisiología , Fagocitosis , Factores de Transcripción/metabolismoRESUMEN
Human skeleton requires an adequate supply of many different nutritional factors for optimal growth and development. The role of nutrition in bone growth has piqued interest in recent years, especially in relation to maximizing peak bone mass and reducing the risk of osteoporosis. Protein deficiency-induced bone loss was induced in female growing rats. All experimental rodent diets were prepared as per recommendations for growing animals. 9-Demethoxy-medicarpin (DMM) treatment was given to growing Sprague Dawley (SD) rats at 1 mg and 10 mg dose orally for 30 days. Bones were collected for bone mineral density (BMD). Bone marrow cells were isolated from femur for calcium nodule formation. Serum samples were collected for biochemical parameters. We found that DMM treatment speeds up the recovery of musculoskeletal weakness by replenishing nutrients in proven rodent model. DMM supplementation for four weeks showed significantly increased vertebral, femur and tibial BMD compared with the untreated PD group. Albumin levels were significantly enhanced in treatment groups, in which 10 mg dose imparted a better effect. We conclude that DMM treatment led to increased BMD and biochemical parameters in protein deficient condition in growing rats and has potential as a bone growth supplement.
Asunto(s)
Densidad Ósea , Huesos , Animales , Femenino , Humanos , Ratas , Suplementos Dietéticos , Ratas Sprague-DawleyRESUMEN
The present study reports a series of 3-aryl-3H-benzopyran-based amide derivatives as osteogenic agents concomitant with anticancer activity. Six target compounds viz 22e, 22f, 23i, and 24b-d showed good osteogenic activity at 1 pM and 100 pM concentrations. One of the potential molecules, 24b, effectively induced ALP activity and mRNA expression of osteogenic marker genes at 1 pM and bone mineralization at 100 pM concentrations. These molecules also presented significant growth inhibition of osteosarcoma (MG63) and estrogen-dependent and -independent (MCF-7 and MDA-MB-231) breast cancer cells. The most active compound, 24b, inhibited the growth of all the cancer cells within the IC50 10.45-12.66 µM. The mechanistic studies about 24b showed that 24b induced apoptosis via activation of the Caspase-3 enzyme and inhibited cancer cell migration. In silico molecular docking performed for 24b revealed its interaction with estrogen receptor-ß (ER-ß) preferentially.
Asunto(s)
Antineoplásicos , Benzopiranos , Benzopiranos/farmacología , Amidas/farmacología , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Receptor beta de Estrógeno/metabolismo , Apoptosis , Proliferación Celular , Línea Celular TumoralRESUMEN
KEY MESSAGE: This study demonstrates multi-gene silencing approach for simultaneous silencing of several functional genes through a fusion gene strategy for protecting plants against root-knot nematode, Meloidogyne incognita. The ability of root-knot nematode (RKN), Meloidogyne incognita, to cause extensive yield decline in a wide range of cultivated crops is well-documented. Due to the inadequacies of current management approaches, the alternatively employed contemporary RNA interference (RNAi)-based host-delivered gene silencing (HD-RNAi) strategy targeting different functional effectors/genes has shown substantial potential to combat RKNs. In this direction, we have explored the possibility of simultaneous silencing of four esophageal gland genes, six plant cell-wall modifying enzymes (PCWMEs) and a serine protease gene of M. incognita using the fusion approach. In vitro RNAi showed that combinatorial gene silencing is the most effective in affecting nematode behavior in terms of reduced attraction, penetration, development, and reproduction in tomato and adzuki beans. In addition, qRT-PCR analysis of M. incognita J2s soaked in fusion-dsRNA showed perturbed expression of all the genes comprising the fusion construct confirming successful dsRNA processing which is also supported by increased mRNA abundance of five key-RNAi pathway genes. In addition, hairpin RNA expressing constructs of multi-gene fusion cassettes were developed and used for generation of Nicotiana tabacum transgenic plants. The integration of gene constructs and expression of siRNAs in transgenic events were confirmed by Southern and Northern blot analyses. Besides, bio-efficacy analyses of transgenic events, conferred up to 87% reduction in M. incognita multiplication. Correspondingly, reduced transcript accumulation of the target genes in the M. incognita females extracted from transgenic events confirmed successful gene silencing.
Asunto(s)
Nicotiana , Tylenchoidea , Animales , Femenino , Interferencia de ARN , Nicotiana/genética , Tylenchoidea/genética , Silenciador del Gen , Plantas Modificadas Genéticamente/genética , ARN Bicatenario/genética , Enfermedades de las Plantas/genéticaRESUMEN
Sustainable wastewater management requires environment-friendly, efficient, and cost-effective methods of water treatment. The ever-growing list of emerging contaminants in municipal wastewater requires advanced, efficient, and cost-effective techniques for its treatment to combat the increasing water demand. The nano-based technologies hold great potential in improving water treatment efficiency and augmenting the water supply. However, the environmental effects of these technologies are still questionable among the public and scientific community. The present review discusses risks to human health due to the use of nano-based technology for the removal of emerging contaminants in water. The discussion will be about the impacts of these technologies on humans. Recommendations about safe and environmentally friendly options for nano-based technology for water treatment have been included. Safest options of nano-based technologies for water treatment and steps to minimize the risk associated with them have also been incorporated in this article. Since all biological systems are different, separate risk analyses should be performed at the environmentally relevant concentration for different durations. There is little/no information on the quantitative impact on humans and requires more understanding. The quantitative measurement of the cellular uptake of nanoparticles is usually difficult. We hope this article will serve its purpose for water researchers, medical researchers, environmentalists, policymakers, and the government.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Purificación del Agua/métodos , TecnologíaRESUMEN
Osteoporosis is a metabolic bone disorder associated with impaired bone microarchitecture leading to fragility fractures. Long-term usage of parathyroid hormone (PTH) enhances bone resorption and leads to osteosarcoma in rats which limits its exposure to maximum 2 years in human. Notably, the anabolic effects of PTH do not endure in the absence of sustained administration. Studies in our lab identified osteogenic and antiresorptive activity in medicarpin, a phytoestrogen belonging to the pterocarpan class. Considering dual-acting property of medicarpin and limitations of PTH therapy, we envisaged that medicarpin sequential treatment after PTH withdrawal could serve as promising therapeutic approach for osteoporosis treatment. As PTH exerts its bone anabolic effect by increasing osteoblast survival, our study aims to determine whether medicarpin amplifies this effect of PTH. Our results show that PTH withdrawal led to reduced bone mineral density and bone parameters, while sequential treatment of medicarpin after PTH withdrawal significantly enhanced these parameters. Remarkably, these effects were more pronounced than 8-week PTH treatment. Sequential therapy also significantly increased P1NP levels and decreased CTX levels and TRAP positive cells compared to PTH 8W group where CTX levels were quite high due to bone resorptive action of PTH. Protein expression studies revealed that medicarpin along with PTH betters the antiapoptotic potential compared to PTH alone, through augmentation of cyclic adenosine monophosphate-PKA-CREB pathway. These results proclaim that medicarpin sequential treatment prevented the reduction in bone accrual and strength accompanying PTH withdrawal and also aided in antiapoptotic role of PTH. The study points toward the potential use of medicarpin as a replacement therapeutic option postdiscontinuation of PTH.
Asunto(s)
Anabolizantes , Resorción Ósea , Osteoporosis , Pterocarpanos , Ratas , Humanos , Animales , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/metabolismo , Pterocarpanos/farmacología , Pterocarpanos/uso terapéutico , Osteoporosis/metabolismo , Huesos/metabolismo , Resorción Ósea/tratamiento farmacológico , Anabolizantes/farmacología , Densidad ÓseaRESUMEN
BACKGROUND: Glioblastoma initiation and progression is believed to be driven by Glioma stem cells (GSCs). Activation of NOTCH1 and WNT, and more recently, non-canonical WNT5A signaling, has been demonstrated to regulate self-renewal and differentiation of the GSCs crucially. High expression levels of NOTCH1 and WNT in GBM tumors contribute to the sustenance of GSCs and mediate characteristic phenotypic plasticity, which is reflected by the different subtypes and tremendous intra-tumor heterogeneity. However, the coregulation of NOTCH1 and WNT5A is not well understood. Here, we studied the role of these molecules in regulating the characteristics of different GSC subtypes. METHODS: We established a novel GSC-enriched cell model, referred to as NSG-70, from a patient with recurrent GBM. NSG-70 cells harbor a unique cytogenetic feature, viz. isochromosome 9q. At the same time, its expression profiles indicate that it is a mixed lineage comprising proneural and mesenchymal subtypes. We examined the relevance of NOTCH1 and WNT5A signaling and their coordinated action in GBM using these cells and other patient-derived models representing different GSC subtypes. RESULTS: Our data revealed that the downregulation of NOTCH1 resulted in the suppression of stem cell and mesenchymal markers and significantly reduced the levels of WNT5A. NOTCH1 knockdown also led to a notable reduction in the vasculogenic mimicry of GSCs. Interestingly, knockdown of WNT5A exhibited similar effects and drove quiescent GSC towards proliferation. In a complementary manner, ectopic expression of WNT5A or rhWNT5A treatment rescued the effects of NOTCH1 knockdown. CONCLUSION: The resistance of GSCs towards conventional therapies in part due to subtype interconversion demands therapies targeting specific GSC subtype. Our study suggests the need for a combinatorial approach that could effectively target the NOTCH1-WNT5A signaling axis toward eliminating GSCs.