Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 615(7954): 913-919, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922589

RESUMEN

Chromatin-binding proteins are critical regulators of cell state in haematopoiesis1,2. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs3-5. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref. 6). Here we identified somatic mutations in MEN1 at the revumenib-menin interface in patients with acquired resistance to menin inhibition. Consistent with the genetic data in patients, inhibitor-menin interface mutations represent a conserved mechanism of therapeutic resistance in xenograft models and in an unbiased base-editor screen. These mutants attenuate drug-target binding by generating structural perturbations that impact small-molecule binding but not the interaction with the natural ligand MLL1, and prevent inhibitor-induced eviction of menin and MLL1 from chromatin. To our knowledge, this study is the first to demonstrate that a chromatin-targeting therapeutic drug exerts sufficient selection pressure in patients to drive the evolution of escape mutants that lead to sustained chromatin occupancy, suggesting a common mechanism of therapeutic resistance.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia , Mutación , Proteínas Proto-Oncogénicas , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Resistencia a Antineoplásicos/genética , Leucemia/tratamiento farmacológico , Leucemia/genética , Leucemia/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799442

RESUMEN

Understanding the functional role of protein-excited states has important implications in protein design and drug discovery. However, because these states are difficult to find and study, it is still unclear if excited states simply result from thermal fluctuations and generally detract from function or if these states can actually enhance protein function. To investigate this question, we consider excited states in ß-lactamases and particularly a subset of states containing a cryptic pocket which forms under the Ω-loop. Given the known importance of the Ω-loop and the presence of this pocket in at least two homologs, we hypothesized that these excited states enhance enzyme activity. Using thiol-labeling assays to probe Ω-loop pocket dynamics and kinetic assays to probe activity, we find that while this pocket is not completely conserved across ß-lactamase homologs, those with the Ω-loop pocket have a higher activity against the substrate benzylpenicillin. We also find that this is true for TEM ß-lactamase variants with greater open Ω-loop pocket populations. We further investigate the open population using a combination of NMR chemical exchange saturation transfer experiments and molecular dynamics simulations. To test our understanding of the Ω-loop pocket's functional role, we designed mutations to enhance/suppress pocket opening and observed that benzylpenicillin activity is proportional to the probability of pocket opening in our designed variants. The work described here suggests that excited states containing cryptic pockets can be advantageous for function and may be favored by natural selection, increasing the potential utility of such cryptic pockets as drug targets.


Asunto(s)
Penicilinasa/química , Penicilinasa/efectos de los fármacos , beta-Lactamasas/química , beta-Lactamasas/farmacología , Sitios de Unión , Escherichia coli , Proteínas de Escherichia coli , Simulación de Dinámica Molecular , Mutación , Penicilina G/química , Penicilina G/metabolismo , Penicilinasa/metabolismo , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , beta-Lactamasas/genética
3.
Biophys J ; 120(14): 2880-2889, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33794150

RESUMEN

Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between 20 and 30 proteins to carry out their viral replication cycle, including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? Although experimentally derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over 1 ms of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble to activate it. Second, guided by this activation mechanism and Markov state models, we investigate whether Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV1 and MERS but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket.

4.
J Biol Chem ; 295(21): 7376-7390, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32299911

RESUMEN

CTX-M ß-lactamases are widespread in Gram-negative bacterial pathogens and provide resistance to the cephalosporin cefotaxime but not to the related antibiotic ceftazidime. Nevertheless, variants have emerged that confer resistance to ceftazidime. Two natural mutations, causing P167S and D240G substitutions in the CTX-M enzyme, result in 10-fold increased hydrolysis of ceftazidime. Although the combination of these mutations would be predicted to increase ceftazidime hydrolysis further, the P167S/D240G combination has not been observed in a naturally occurring CTX-M variant. Here, using recombinantly expressed enzymes, minimum inhibitory concentration measurements, steady-state enzyme kinetics, and X-ray crystallography, we show that the P167S/D240G double mutant enzyme exhibits decreased ceftazidime hydrolysis, lower thermostability, and decreased protein expression levels compared with each of the single mutants, indicating negative epistasis. X-ray structures of mutant enzymes with covalently trapped ceftazidime suggested that a change of an active-site Ω-loop to an open conformation accommodates ceftazidime leading to enhanced catalysis. 10-µs molecular dynamics simulations further correlated Ω-loop opening with catalytic activity. We observed that the WT and P167S/D240G variant with acylated ceftazidime both favor a closed conformation not conducive for catalysis. In contrast, the single substitutions dramatically increased the probability of open conformations. We conclude that the antagonism is due to restricting the conformation of the Ω-loop. These results reveal the importance of conformational heterogeneity of active-site loops in controlling catalytic activity and directing evolutionary trajectories.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Evolución Molecular , Mutación Missense , Resistencia betalactámica , beta-Lactamasas/química , Sustitución de Aminoácidos , Catálisis , Ceftazidima/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
5.
Biochemistry ; 57(1): 117-135, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29039929

RESUMEN

Tabtoxinine-ß-lactam (TßL), also known as wildfire toxin, is a time- and ATP-dependent inhibitor of glutamine synthetase produced by plant pathogenic strains of Pseudomonas syringae. Here we demonstrate that recombinant glutamine synthetase from Escherichia coli phosphorylates the C3-hydroxyl group of the TßL 3-(S)-hydroxy-ß-lactam (3-HßL) warhead. Phosphorylation of TßL generates a stable, noncovalent enzyme-ADP-inhibitor complex that resembles the glutamine synthetase tetrahedral transition state. The TßL ß-lactam ring remains intact during enzyme inhibition, making TßL mechanistically distinct from traditional ß-lactam antibiotics such as penicillin. Our findings could enable the design of new 3-HßL transition state inhibitors targeting enzymes in the ATP-dependent carboxylate-amine ligase superfamily with broad therapeutic potential in many disease areas.


Asunto(s)
Adenosina Trifosfato/metabolismo , Azetidinas/farmacología , Toxinas Bacterianas/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Azetidinas/aislamiento & purificación , Azetidinas/metabolismo , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/aislamiento & purificación , Catálisis , Cromatografía Liquida , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Pseudomonas syringae/metabolismo
6.
J Basic Microbiol ; 54(8): 781-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775888

RESUMEN

Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils.


Asunto(s)
Aizoaceae/crecimiento & desarrollo , Halobacillus/metabolismo , Halomonas/metabolismo , Metales Pesados/farmacología , Cloruro de Sodio/farmacología , Aizoaceae/microbiología , Amoníaco/metabolismo , Amilasas/metabolismo , Técnicas de Tipificación Bacteriana , Halobacillus/genética , Halomonas/genética , Cianuro de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Péptido Hidrolasas/metabolismo , Fosfatos/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Salinidad , Suelo , Contaminantes del Suelo
7.
J Phys Chem B ; 128(15): 3554-3562, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38580321

RESUMEN

Understanding how signaling proteins like G proteins are allosterically activated is a long-standing challenge with significant biological and medical implications. Because it is difficult to directly observe such dynamic processes, much of our understanding is based on inferences from a limited number of static snapshots of relevant protein structures, mutagenesis data, and patterns of sequence conservation. Here, we use computer simulations to directly interrogate allosteric coupling in six G protein α-subunit isoforms covering all four G protein families. To analyze this data, we introduce automated methods for inferring allosteric networks from simulation data and assessing how allostery is conserved or diverged among related protein isoforms. We find that the allosteric networks in these six G protein α subunits are largely conserved and consist of two pathways, which we call pathway-I and pathway-II. This analysis predicts that pathway-I is generally dominant over pathway-II, which we experimentally corroborate by showing that mutations to pathway-I perturb nucleotide exchange more than mutations to pathway-II. In the future, insights into unique elements of each G protein family could inform the design of isoform-specific drugs. More broadly, our tools should also be useful for studying allostery in other proteins and assessing the extent to which this allostery is conserved in related proteins.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP , Proteínas , Regulación Alostérica , Proteínas/química , Simulación por Computador , Subunidades alfa de la Proteína de Unión al GTP/genética
8.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873443

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

9.
J Phys Chem B ; 128(1): 109-116, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38154096

RESUMEN

Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy. A higher-level interface allows users to easily model their molecules of interest with general purpose, pretrained potential functions. A collection of optimized CUDA kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate these features in simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent protein chromophore in water. Taken together, these features make it practical to use machine learning to improve the accuracy of simulations with only a modest increase in cost.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Aprendizaje Automático
10.
bioRxiv ; 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36711619

RESUMEN

Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. The high sequence and structural conservation of the catalytic kinase domain complicates the development of specific kinase inhibitors. As a consequence, most kinase inhibitors also inhibit off-target kinases which complicates the interpretation of phenotypic responses. Additionally, inhibition of off-targets may cause toxicity in patients. Therefore, highly selective kinase inhibition is a major goal in both biomedical research and clinical practice. Currently, efforts to improve selective kinase inhibition are dominated by the development of new kinase inhibitors. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target activities. We have developed a multicompound-multitarget scoring (MMS) method framework that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables rational polypharmacology by allowing optimization of inhibitor combinations against multiple selected on-targets and off-targets. Using MMS with previously published chemogenomic kinase inhibitor datasets we determine inhibitor combinations that achieve potent activity against a target kinase and that are more selective than the most selective single inhibitor against that target. We validate the calculated effect and selectivity of a combination of inhibitors using the in cellulo NanoBRET assay. The MMS framework is generalizable to other pharmacological targets where compound specificity is a challenge and diverse compound libraries are available.

11.
Elife ; 122023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047771

RESUMEN

Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicate the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems. Current efforts focus on the development of inhibitors with improved selectivity. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target effects. We develop a multicompound-multitarget scoring (MMS) method that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables optimization of inhibitor combinations for multiple on-targets. Using MMS with published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases with better selectivity than the most selective single inhibitor and validate the predicted effect and selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances selectivity in rational multitargeting applications. The MMS framework is generalizable to other non-kinase biological targets where compound selectivity is a challenge and diverse compound libraries are available.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/uso terapéutico , Fosfotransferasas , Dominio Catalítico , Neoplasias/tratamiento farmacológico
12.
J Chem Theory Comput ; 19(15): 4863-4882, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37450482

RESUMEN

Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a graphics processing unit (GPU)-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches─alchemical replica exchange and alchemical replica exchange with solute tempering─for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and is available at https://github.com/choderalab/perses.


Asunto(s)
Aminoácidos , Simulación de Dinámica Molecular , Termodinámica , Entropía , Unión Proteica
13.
bioRxiv ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945557

RESUMEN

Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a GPU-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches-alchemical replica exchange and alchemical replica exchange with solute tempering-for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally-determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and available at https://github.com/choderalab/perses .

14.
ArXiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37986730

RESUMEN

Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy. A higher-level interface allows users to easily model their molecules of interest with general purpose, pretrained potential functions. A collection of optimized CUDA kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate these features on simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent protein (GFP) chromophore in water. Taken together, these features make it practical to use machine learning to improve the accuracy of simulations at only a modest increase in cost.

15.
Nat Commun ; 13(1): 2269, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477718

RESUMEN

Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Virus ADN/genética , Ebolavirus/genética , Humanos , ARN Bicatenario/genética , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética
16.
Nat Commun ; 12(1): 1936, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782395

RESUMEN

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Sitios de Unión , COVID-19/virología , Dimerización , Simulación de Dinámica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformación Proteica , Dominios Proteicos
17.
Nat Chem ; 13(7): 651-659, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031561

RESUMEN

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of 'cryptic' epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , COVID-19/transmisión , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteoma , Glicoproteína de la Espiga del Coronavirus/química
18.
bioRxiv ; 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33330873

RESUMEN

Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between twenty and thirty proteins to carry out their viral replication cycle including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? While experimentally-derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over one millisecond of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble in order to activate it. Second, guided by this activation mechanism and Markov state models (MSMs), we investigate if Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV-2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV-1 and MERS, but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket. STATEMENT OF SIGNIFICANCE: Coronaviruses are a major threat to human health. These viruses employ molecular machines, called proteins, to infect host cells and replicate. Characterizing the structure and dynamics of these proteins could provide a basis for designing small molecule antivirals. In this work, we use computer simulations to understand the moving parts of an essential SARS-CoV-2 protein, understand how a binding partner turns it on and off, and identify a novel pocket that antivirals could target to shut this protein off. The pocket is also present in other coronaviruses but not in the related human protein, so it could be a valuable target for pan-coronavirus antivirals.

19.
bioRxiv ; 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32587966

RESUMEN

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.

20.
bioRxiv ; 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32637963

RESUMEN

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA