RESUMEN
Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.
Asunto(s)
Coinfección/inmunología , Proteínas de Unión al ADN/inmunología , Tolerancia Inmunológica/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis/inmunología , Infecciones Bacterianas/inmunología , Quemaduras/inmunología , Quemaduras/microbiología , Coinfección/microbiología , Humanos , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/microbiología , Linfocitos T/inmunologíaRESUMEN
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1,000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing â¼6,200 mouse and â¼5,300 human proteins from circulating neutrophils. 4,800 mouse and 3,400 human proteins were recovered from 1,000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue infiltrated neutrophils.
RESUMEN
The redox-active nature of a pincer has been exploited to conduct C-C cross-coupling reactions under mild conditions. A nickel complex with a NNN pincer was dimeric in the solid state, and the structure displayed a Ni2 N2 diamond core. In the dimeric structure, both ligand backbones house an electron, in the iminosemiquinonate form, to keep the metal's oxidation state at +2. In the presence of an aryl Grignard reagent, only 3â mol % loading the nickel complex generates a Kumada cross-coupled product in good yield from a wide variety of aryl-X (X= I, Br, Cl) substrates. That the ligand-based radical remains responsible for promoting such a coupling reaction following a radical pathway is suggested by TEMPO quenching. Furthermore, a radical-clock experiment along with tracing product distribution unambiguously supported the radical's involvement through the catalytic cycle. A series of thorough mechanistic probation, including computational DFT analysis, disclosed the cooperative action of both redox-active pincer ligand and the metal centre to drive the reaction.
RESUMEN
BACKGROUND: Superficial mycoses are fungal infections limited to the outermost layers of the skin and its appendages. The chief causative agents of these mycoses are dermatophytes and yeasts. The diagnosis of dermatophytosis can be made by direct mycological examination with potassium hydroxide (10%-30%) of biological material obtained from patients with suspected mycosis, providing results more rapid than fungal cultures, which may take days or weeks. This information, together with clinical history and laboratory diagnosis, ensures that the appropriate treatment is initiated promptly. However, false negative results are obtained in 5%-15%, by conventional methods of diagnosis of dermatophytosis. OBJECTIVES: To study the metabolic profiles of the commonly occurring dermatophytes by NMR spectroscopy. PATIENTS/MATERIALS: We have used 1D and 2D Nuclear Magnetic Resonance (NMR) experiments along with Human Metabolome Database (HMDB) and Chenomx database search for identification of primary metabolites in the methanol extract of two fungal species: Trichophyton mentagrophyte (T. mentagrophyte) and Trichophyton rubrum (T. rubrum). Both standard strains and representative number of clinical isolates of these two species were investigated. Further, metabolic profiles obtained were analysed using multivariate analysis. RESULTS: We have identified 23 metabolites in the T. mentagrophyte and another 23 metabolites in T. rubrum. Many important metabolites like trehalose, proline, mannitol, acetate, GABA and several other amino acids were detected, which provide the necessary components for fungal growth and metabolism. Altered metabolites were defined between Trichophyton mentagrophyte and T. rubrum strains. CONCLUSION: We have detected many metabolites in the two fungal species T. mentagrophyte and T. rubrum by using NMR spectroscopy. NMR spectroscopy provides a holistic snapshot of the metabolome of an organism. Key metabolic differences were identified between the two fungal strains. We need to perform more studies on metabolite profiling of the samples from these species for their rapid diagnosis and prompt treatment.
Asunto(s)
Arthrodermataceae , Dermatomicosis , Tiña , Humanos , Trichophyton , Dermatomicosis/microbiología , Tiña/diagnóstico , Tiña/microbiología , Espectroscopía de Resonancia MagnéticaRESUMEN
The recently formulated guidelines by Khilnani GC et al. for the prescription of antibiotics for critically ill patients present an extensive compilation of evidence and recommendations. Despite their comprehensive nature, several inconsistencies need addressing. In this commentary, we delve into some of these discrepancies in the order in which they appeared in the guidelines, starting with the misrepresentation of "nonbronchoscopic bronchoalveolar lavage (BAL)" and "mini BAL" as different techniques when they are, in fact, identical. Secondly, the Centers for Disease Control and Prevention (CDC) in the year 2013 replaced the older, unreliable ventilator-associated pneumonia (VAP) definition with ventilator-associated events (VAE). This new VAE definition eliminates subjectivity in pneumonia diagnosis by focusing on objective criteria for ventilator support changes, avoiding dependence on potentially inaccurate chest X-rays and inconsistent medical record keeping. Thus, using the term VAP in the Indian guidelines seems regressive. Furthermore, the recommendation for routine anaerobic coverage in aspiration pneumonia is outdated and unsupported by current evidence. Lastly, while endorsing multiplex polymerase chain reaction (PCR) for pathogen identification, the guidelines fail to adequately address its limitations and the risk of overdiagnosis. How to cite this article: Raj N, Nath SS, Singh V, Agarwal J. Inconsistencies in the Indian Guidelines for the Prescription of Antibiotics for Critically Ill Patients. Indian J Crit Care Med 2024;28(10):908-911.
RESUMEN
Background: Presently, many laboratories are equipped with automated system for antimicrobial susceptibility testing (AST) for minimum inhibitory concentration-based reporting which enables the clinician to choose the right antimicrobial for timely treatment of sepsis. The study aimed to assess performance of direct AST from blood culture positive broth using automated AST system for accuracy and time taken to release the report. Materials and methods: The present study conducted in a 25-bedded ICU in North India for 12 months. Single morphotype of bacteria on gram stain from positively flagged blood culture bottles were included, which was directly identified (using an in-house protocol) with MALDI-TOF-MS from positive blood culture broths. DAST was carried out from 200 such blood culture broths and results were compared with reference AST (RAST) which was also done using VITEK-2 using overnight grown bacterial colonies as per standard protocol. Results: Among 60 isolates of Enterobacterales, 99% categorical agreement for both E. coli and K. pneumoniae observed by two methods were tested for AST. Among non-fermenters, Pseudomonas aeruginosa showed a categorical agreement of 99.6%, as compared with Acinetobacter spp. and exotic GNBs, which showed 95-96% agreement. A significant difference of 18-24 hours was noted in time to release the report between DAST and RAST, for GNB and GPC both. Conclusion: Direct AST from positive flagged blood culture bottles can significantly reduce the time to release the bacterial susceptibility report by up to 24 hours, at the same time maintaining the accuracy. How to cite this article: Singh V, Agarwal J, Nath SS, Sharma A. Evaluation of Direct Antimicrobial Susceptibility Testing from Positive Flagged Blood Cultures in Sepsis Patients. Indian J Crit Care Med 2024;28(4):387-392.
RESUMEN
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirinâ vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide (S20) exhibited the highest antimicrobial potential. The N'-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide (S5) displayed good antifungal potential against Rhizopus oryzae, whereas N'-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide (S20) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide (S16) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.
Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Antifúngicos/química , Antiinflamatorios/farmacologíaRESUMEN
BACKGROUND: Moderate dietary protein restriction confers neuroprotection when applied before ischemic stroke. How a moderately protein-reduced diet influences stroke recovery when administered after stroke, is a clinically relevant question. This question has not yet been investigated. METHODS: Male C57BL6/J mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately after the stroke, mice were randomized to two normocaloric diets: a moderately protein-reduced diet containing 8% protein (PRD) or normal diet containing 20% protein (ND). Post-stroke neurological deficits were evaluated by a comprehensive test battery. Antioxidant and neuroinflammatory responses in the brain and liver were evaluated by Western blot and RTqPCR. Stroke-induced brain injury, microvascular integrity, glial responses, and neuroplasticity were assessed by immunohistochemistry. Fecal microbiota analysis was performed using 16S ribosomal RNA amplicon sequencing. RESULTS: We show that PRD reduces brain infarct volume after three days and enhances neurological and, specifically, motor-coordination recovery over six weeks in stroke mice. The recovery-promoting effects of PRD were associated with increased antioxidant responses and reduced neuroinflammation. Histochemical studies revealed that PRD increased long-term neuronal survival, increased peri-infarct microvascular density, reduced microglia/macrophage accumulation, increased contralesional pyramidal tract plasticity, and reduced brain atrophy. Fecal microbiota analysis showed reduced bacterial richness and diversity in ischemic mice on ND starting at 7 dpi. PRD restored bacterial richness and diversity at these time points. CONCLUSION: Moderate dietary protein restriction initiated post-ischemic stroke induces neurological recovery, brain remodeling, and neuroplasticity in mice by mechanisms involving antiinflammation and, in the post-acute phase, commensal gut microbiota rebalancing.
Asunto(s)
Isquemia Encefálica , Microbioma Gastrointestinal , Animales , Encéfalo , Isquemia Encefálica/complicaciones , Dieta con Restricción de Proteínas , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , NeuroprotecciónRESUMEN
2-Halogenatedphenyl benzoxazole-5-carboxylic acids with mono-halogen (chloro, bromo and fluoro) substituted at ortho-, meta- and para-positions on the phenyl ring were designed and synthesized based on significance of presence of halogen in increasing number of marketed halogenated drugs and importance of benzoxazoles. These 2-alogenatedphenylbenzoxazole-5-carboxylic acids and their methyl esters were screened for anti-inflammatory activity, and cytotoxicity. 2-(3-Chlorophenyl)benzoxaole-5-carboxylic acid (6b) exhibited significant anti-inflammatory activity with IC50 values of 0.103â mM almost equivalent to the standard drug ibuprofen (0.101â mM). 2-(4-Chlorophenyl)benzoxaole-5-carboxylic acid (6c) showed excellent cytotoxic activity against 22Rv1 cells (human prostate carcinoma epithelial cell lines) with IC50 value of 1.54â µM better than that of standard drug doxorubicin having IC50 value of 2.32â µM. More importantly, the selectivity index of this potential molecule was found to be 57.74. Molecular docking analysis resulted in good binding interactions of these compounds with their respective biochemical targets viz. Cyclooxygenase-2 and aldo-keto reductase IC3.
Asunto(s)
Antineoplásicos , Benzoxazoles , Humanos , Simulación del Acoplamiento Molecular , Benzoxazoles/farmacología , Benzoxazoles/química , Ciclooxigenasa 2/metabolismo , Ibuprofeno , Citotoxinas , Ácidos Carboxílicos/farmacología , Relación Estructura-Actividad , Antineoplásicos/química , Antiinflamatorios/farmacología , Doxorrubicina , Aldo-Ceto Reductasas/metabolismo , Estructura MolecularRESUMEN
Nineteen heterocyclic chalcones were synthesized from 4-acetyl-5-methylquinolylpyrazole and heteroaryl (imidazole, pyrazole, thiophene, indole and triazole) aldehydes and were screened inâ vitro using four tumor cell lines for their cytotoxic capability and for antimicrobial activity. The chalcone 5b exhibited the highest activity with IC50 values 2.14â µM against colon (HCT-116) and 5.0â µM, against prostate (PC-3) cancer cell lines and also displayed good activity against fungal strain (A.â niger) with MIC value 9.1â µM. The chalcones 5q and 5p displayed good activity against bacterial strains (S.â aureus) having MIC value 2.6â µM and fungal strain (C.â albicans) having MIC value 5.4â µM, respectively. The molecular docking outcome revealed that the synthesized heterocyclic chalcones demonstrated hydrogen bond, hydrophobic and electrostatic interactions with their respective biochemical targets.
Asunto(s)
Antiinfecciosos , Antineoplásicos , Chalcona , Chalconas , Aldehídos , Antiinfecciosos/farmacología , Antineoplásicos/química , Candida albicans , Chalconas/química , Imidazoles , Indoles , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/química , Staphylococcus aureus , Relación Estructura-Actividad , Tiofenos , TriazolesRESUMEN
Highly amphiphobic (repelling both water and low surface tension liquids) and optically transparent surface treatments have widespread demand. By combining a rational growth of metal-organic frameworks (MOFs) with functionalization by environmentally safe, flexible alkyl groups, here we present surfaces with nanohierarchical morphology, comprising two widely differing nanoscale features. These nanohierarchical MOF films show excellent amphiphobicity. We further present three key features. First, we demonstrate the need to use flexible alkyl chains to achieve low drop sliding angles and self-cleaning. Second, our thin (â¼200 nm) MOF films display excellent optical transparency and robustness. Third, the nanohierarchical morphology enables a unique combination of additional desirable properties, e.g., resistance to high-speed liquid impact (up to â¼35 m/s, Weber number >4 × 104), thermal stability up to 200 °C, scratch resistance, low ice adhesion for >10 icing/deicing cycles, stability in harsh acidic and basic environments, and capability to remove carcinogenic pollutants from water.
RESUMEN
BACKGROUND AND OBJECTIVES: Although about 80% of coronavirus disease-2019 (COVID-19) cases are reported to be mild, the remaining 20% of cases often result in severe disease with the potential of crushing already overstrained health care services. There has been sustainable growth of COVID-19 cases worldwide since mid-May 2020. To keep tabs on community transmission of COVID-19 infection screening of the samples from a large population is needed which includes asymptomatic/symptomatic individuals along with the migrant population. This requires extra resources, man power, and time for detection of severe acute respiratory syndrome coronavirus 2 by real-time polymerase chain reaction (RT-PCR). In the current scenario, the pooled sample testing strategy advocated by the Indian Council of Medical Research, New Delhi is a new approach that is very promising in resource-limited settings. In this study, we have evaluated the pooled strategy in terms of accurate testing results, utilization of consumables, and identification of borderline positive cases. MATERIALS AND METHODS: Between April and June 2020, we performed COVID-19 testing by RT-PCR from areas with varying prevalence of population referred to COVID laboratory, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow. In the first step, the samples are collated into pools of 5 or 10. These pools are tested by RT-PCR. Negative pools were reported as negative whereas positive pools of 5 and 10 are then deconvoluted and each sample is tested individually. RESULTS: In the present study, we tested 4620 samples in 462 pools of 10 and 14 940 samples in 2990 pools of 5. Among 10 samples pool, 61 (13%) pools flagged positive in the first step. In the second step, among 61 pools (610 samples) deconvoluted strategy was followed in which 72 individual samples came positive. The pooled-sample testing strategy helps saves substantial resources and time during surge testing and enhanced pandemic surveillance. This approach requires around 76% to 93% fewer tests done in low to moderate prevalence settings and group sizes up to 5-10 in a population, compared to individual testing. CONCLUSIONS: Pooled-sample PCR analysis strategies can save substantial resources and time for COVID-19 mass testing in comparison with individual testing without compromising the resulting outcome of the test. In particular, the pooled-sample approach can facilitate mass screening in the early coming stages of COVID-19 outbreaks, especially in low- and middle-income settings, and control the spread by meticulous testing of all risk groups.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Tamizaje Masivo/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes , Carga ViralRESUMEN
BACKGROUND: The newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a worldwide pandemic of human respiratory disease. Angiotensin-converting enzyme (ACE) 2 is the key receptor on lung epithelial cells to facilitate initial binding and infection of SARS-CoV-2. The binding to ACE2 is mediated via the spike glycoprotein present on the viral surface. Recent clinical data have demonstrated that patients with previous episodes of brain injuries are a high-risk group for SARS-CoV-2 infection. An explanation for this finding is currently lacking. Sterile tissue injuries including stroke induce the release of several inflammatory mediators that might modulate the expression levels of signaling proteins in distant organs. Whether systemic inflammation following brain injury can specifically modulate ACE2 expression in different vital tissues has not been investigated. METHODS: For the induction of brain stroke, mice were subjected to a surgical procedure for transient interruption of blood flow in the middle cerebral artery for 45 min and sacrificed after 1 and 3 days for analysis of brain, lung, heart, and kidney tissues. Gene expression and protein levels of ACE2, ACE, IL-6 and IL1ß were measured by quantitative PCR and Western blot, respectively. The level of soluble ACE2 in plasma and bronchial alveolar lavage (BAL) was measured using an immunoassay. Immune cell populations in lymphoid organs were analyzed by flow cytometry. Post-stroke pneumonia in mice was examined by bacterial cultures from lung homogenates and whole blood. RESULTS: Strikingly, 1 day after surgery, we observed a substantial increase in the protein levels of ACE2 in the lungs of stroke mice compared to sham-operated mice. However, the protein levels of ACE2 were found unchanged in the heart, kidney, and brain of these animals. In addition, we found increased transcriptional levels of alveolar ACE2 after stroke. The increased expression of ACE2 was significantly associated with the severity of behavioral deficits after stroke. The higher protein levels of alveolar ACE2 persisted until 3 days of stroke. Interestingly, we found reduced levels of soluble ACE2 in plasma but not in BAL in stroke-operated mice compared to sham mice. Furthermore, stroke-induced parenchymal and systemic inflammation was evident with the increased expression of IL-6 and IL-1ß. Reduced numbers of T-lymphocytes were present in the blood and spleen as an indicator of sterile tissue injury-induced immunosuppression. CONCLUSIONS: We demonstrate specific augmented alveolar ACE2 levels and inflammation in murine lungs after experimental stroke. These pre-clinical findings suggest that patients with brain injuries may have increased binding affinity to SARS-CoV-2 in their lungs which might explain why stroke is a risk factor for higher susceptibility to develop COVID-19.
Asunto(s)
COVID-19 , Accidente Cerebrovascular , Animales , Humanos , Pulmón , Ratones , Peptidil-Dipeptidasa A/genética , SARS-CoV-2RESUMEN
BACKGROUND: Increasing antimicrobial resistance (AMR) among common bacteria combined with the slow development of new antibiotics has posed a challenge to clinicians. AIM AND OBJECTIVE: To demonstrate whether antimicrobial and diagnostic stewardship program (ASP and DSP)-related interventions improve antibiotic susceptibilities among common bacteria causing bloodstream infections (BSI) in patients admitted to the intensive care unit (ICU) and whether these resulted in changes in the volume of antimicrobial consumption. MATERIALS AND METHODS: We compared the susceptibility patterns of gram-negative bacteria (GNB) and gram-positive cocci (GPC) causing BSI and changes in the volume of antibiotics prescribed for the same before and after 2017 by a retrospective analysis. RESULTS: Postintervention, there was increased susceptibility of all GNBs to aminoglycosides; Escherichia coli and Klebsiella spp. to beta-lactambeta-lactamase inhibitors (BLBLI) combinations; and Klebsiella spp. and Pseudomonas spp. to carbapenems. Acinetobacter spp., Klebsiella spp., and Pseudomonas spp. showed improved susceptibility to doxycycline, whereas E. coli and Klebsiella spp. showed significantly improved susceptibility to fluoroquinolones. Among GPCs, there was increased susceptibility of Staphylococcus aureus (levofloxacin, clindamycin, and aminoglycoside), coagulase-negative S. aureus (CoNS) (chloramphenicol, levofloxacin, clindamycin, and aminoglycoside), and enterococci (chloramphenicol, levofloxacin, and clindamycin). There was a significant reduction in usage of antimicrobials for the treatment of GPCs (linezolid, doxycycline, chloramphenicol, levofloxacin, BLBLI, macrolide, and cephalosporin) and GNBs (levofloxacin, cephalosporin, carbapenem, and colistin), which caused BSI. CONCLUSION: The present study illustrated that combined ASP and DSP interventions successfully reversed the resistance pattern of organisms causing BSI and resulted in a reduction in antibiotic utilization. HOW TO CITE THIS ARTICLE: Agarwal J, Singh V, Das A, Nath SS, Kumar R, Sen M. Reversing the Trend of Antimicrobial Resistance in ICU: Role of Antimicrobial and Diagnostic Stewardship. Indian J Crit Care Med 2021;25(6):635-641.
RESUMEN
Dehydrogenative coupling-based reactions have emerged as an efficient route toward the synthesis of a plethora of heterocyclic rings. Herein, we report an efficacious, nickel-catalyzed synthesis of two important heterocycles such as quinoline and quinoxaline. The catalyst is molecularly defined, is phosphine-free, and can operate at a mild reaction temperature of 80 °C. Both the heterocycles can be easily assembled via double dehydrogenative coupling, starting from 2-aminobenzyl alcohol/1-phenylethanol and diamine/diol, respectively, in a shorter span of reaction time. This environmentally benign synthetic protocol employing an inexpensive catalyst can rival many other transition-metal systems that have been developed for the fabrication of two putative heterocycles. Mechanistically, the dehydrogenation of secondary alcohol follows clean pseudo-first-order kinetics and exhibits a sizable kinetic isotope effect. Intriguingly, this catalyst provides an example of storing the trapped hydrogen in the ligand backbone, avoiding metal-hydride formation. Easy regeneration of the oxidized form of the catalyst under aerobic/O2 oxidation makes this protocol eco-friendly and easy to handle.
RESUMEN
UNLABELLED: Acute brain ischemia induces a local neuroinflammatory reaction and alters peripheral immune homeostasis at the same time. Recent evidence has suggested a key role of the gut microbiota in autoimmune diseases by modulating immune homeostasis. Therefore, we investigated the mechanistic link among acute brain ischemia, microbiota alterations, and the immune response after brain injury. Using two distinct models of acute middle cerebral artery occlusion, we show by next-generation sequencing that large stroke lesions cause gut microbiota dysbiosis, which in turn affects stroke outcome via immune-mediated mechanisms. Reduced species diversity and bacterial overgrowth of bacteroidetes were identified as hallmarks of poststroke dysbiosis, which was associated with intestinal barrier dysfunction and reduced intestinal motility as determined by in vivo intestinal bolus tracking. Recolonizing germ-free mice with dysbiotic poststroke microbiota exacerbates lesion volume and functional deficits after experimental stroke compared with the recolonization with a normal control microbiota. In addition, recolonization of mice with a dysbiotic microbiome induces a proinflammatory T-cell polarization in the intestinal immune compartment and in the ischemic brain. Using in vivo cell-tracking studies, we demonstrate the migration of intestinal lymphocytes to the ischemic brain. Therapeutic transplantation of fecal microbiota normalizes brain lesion-induced dysbiosis and improves stroke outcome. These results support a novel mechanism in which the gut microbiome is a target of stroke-induced systemic alterations and an effector with substantial impact on stroke outcome. SIGNIFICANCE STATEMENT: We have identified a bidirectional communication along the brain-gut microbiota-immune axis and show that the gut microbiota is a central regulator of immune homeostasis. Acute brain lesions induced dysbiosis of the microbiome and, in turn, changes in the gut microbiota affected neuroinflammatory and functional outcome after brain injury. The microbiota impact on immunity and stroke outcome was transmissible by microbiota transplantation. Our findings support an emerging concept in which the gut microbiota is a key regulator in priming the neuroinflammatory response to brain injury. These findings highlight the key role of microbiota as a potential therapeutic target to protect brain function after injury.
Asunto(s)
Disbiosis/etiología , Encefalitis/complicaciones , Encefalitis/etiología , Microbiota/fisiología , Accidente Cerebrovascular/complicaciones , Animales , Infarto Encefálico/etiología , Complejo CD3/metabolismo , Modelos Animales de Enfermedad , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Femenino , Enfermedades Gastrointestinales/etiología , Motilidad Gastrointestinal/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ileus/inmunología , Ileus/microbiología , Ileus/patología , Infarto de la Arteria Cerebral Media/complicaciones , Leucocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microbiota/inmunología , Accidente Cerebrovascular/etiología , Estructuras Linfoides Terciarias/patologíaRESUMEN
Experimental reproducibility between laboratories is a major translational obstacle worldwide, particularly in studies investigating immunomodulatory therapies in relation to brain disease. In recent years increasing attention has been drawn towards the gut microbiota as a key factor in immune cell polarization. Moreover, manipulation of the gut microbiota has been found effective in a diverse range of brain disorders. Within this study we aimed to test the impact of microbiota differences between mice from different sources on the post-stroke neuroinflammatory response. With this rationale, we have investigated the correlation between microbiota differences and the immune response in mice from three commercial breeders with the same genetic background (C57BL/6). While overall bacterial load was comparable, we detected substantial differences in species diversity and microbiota composition on lower taxonomic levels. Specifically, we investigated segmented filamentous bacteria (SFB)-which have been shown to promote T cell polarization-and found that they were absent in mice from one breeder but abundant in others. Our experiments revealed a breeder specific correlation between SFB presence and the ratio of Treg to Th17 cells. Moreover, recolonization of SFB-negative mice with SFB resulted in a T cell shift which mimicked the ratios found in SFB-positive mice. We then investigated the response to a known experimental immunotherapeutic approach, CD28 superagonist (CD28SA), which has been previously shown to expand the Treg population. CD28SA treatment had differing effects between mice from different breeders and was found to be ineffective at inducing Treg expansion in SFB-free mice. These changes directly corresponded to stroke outcome as mice lacking SFB had significantly larger brain infarcts. This study demonstrates the major impact of microbiota differences on T cell polarization in mice during ischemic stroke conditions, and following immunomodulatory therapies.
Asunto(s)
Microbioma Gastrointestinal , Accidente Cerebrovascular/inmunología , Linfocitos T/fisiología , Animales , Antígenos CD28/administración & dosificación , Antígenos CD28/inmunología , Encefalitis/inmunología , Encefalitis/metabolismo , Femenino , Inmunoterapia , Activación de Linfocitos , Masculino , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Accidente Cerebrovascular/terapiaRESUMEN
ß-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 µm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm-1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.
Asunto(s)
Antimaláricos/química , Artemisininas/química , Solventes/química , Antimaláricos/metabolismo , Arteméter , Artemisininas/metabolismo , Rastreo Diferencial de Calorimetría , Cristalización , Solubilidad , Solventes/metabolismo , Difracción de Rayos XRESUMEN
Osmotic pump delivery systems have made significant advances in the past decades for controlled drug release over a long period of time. Usually, osmotic pump products require sophisticated and expensive laser drill technology resulting in increase in production cost and decrease in production efficiency. In this study, a lamotrigine extended release tablet based on a controlled-porosity osmotic pump (CPOP) system was developed to circumvent laser drill technology in reference, Lamictal XR®. The tablet core was coated by a polymer blend of Acryl-EZE® and HPMC E5. Lactose and HPMC were added in the CPOP core to adjust the release profile. An orthogonal design was employed to optimize the formulation from factors, i.e., core composition, coating materials ratio and coating levels. Comparisons of in vitro drug release profiles were also conducted. The optimized formulation showed a satisfactory zero-order release profile (R2 = 0.9912). Similarity factor, f2 of 77 was obtained in larger scale. The lamotrigine extended release tablets based on the CPOP system showed ideal reproducibility and stability. The developed system has the ability to be an alternative production method for Lamictal XR®, which could circumvent the laser drill technology and promote the osmotic pump generalization.