RESUMEN
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Asunto(s)
Fiebre Hemorrágica Ebola , Tomografía de Emisión de Positrones , Receptores de GABA , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/diagnóstico por imagen , Fiebre Hemorrágica Ebola/patología , Pulmón/patología , Macaca mulatta , Tomografía de Emisión de Positrones/métodos , Pirazoles/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Bazo/patologíaRESUMEN
Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.
Asunto(s)
Interferón gamma , Neoplasias , Humanos , Animales , Ratones , Interferón gamma/farmacología , Interferón gamma/metabolismo , Antígeno B7-H1 , Línea Celular Tumoral , Inmunoterapia , Microambiente Tumoral , Neoplasias/genéticaRESUMEN
The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.
Asunto(s)
Diazooxonorleucina/antagonistas & inhibidores , Diazooxonorleucina/uso terapéutico , Glutamina/antagonistas & inhibidores , Imagen por Resonancia Magnética/métodos , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/patología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/patología , Adulto , Animales , Antimaláricos/uso terapéutico , Biomarcadores , Barrera Hematoencefálica/patología , Encéfalo/parasitología , Encéfalo/patología , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/patología , Niño , Diazooxonorleucina/administración & dosificación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Malaria Cerebral/diagnóstico por imagen , Malaria Cerebral/parasitología , Malaria Falciparum/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/patogenicidadRESUMEN
BACKGROUND: Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics' delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. METHODS: Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5-8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. RESULTS: In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. CONCLUSION: Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials.
Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Microglía/metabolismo , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Femenino , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , SonicaciónRESUMEN
OBJECTIVE: To investigate the safety and tolerability of convection-enhanced delivery of an adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor into the bilateral putamina of PD patients. METHODS: Thirteen adult patients with advanced PD underwent adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor and gadoteridol (surrogate MRI tracer) coinfusion (450 µL/hemisphere) at escalating doses: 9 × 1010 vg (n = 6); 3 × 1011 vg (n = 6); and 9 × 1011 vg (n = 1). Intraoperative MRI monitored infusion distribution. Patients underwent UPDRS assessment and [18 F]FDOPA-PET scanning preoperatively and 6 and 18 months postoperatively. RESULTS: Adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor was tolerated without clinical or radiographic toxicity. Average putaminal coverage was 26%. UPDRS scores remained stable. Ten of thirteen and 12 of 13 patients had increased [18 F]FDOPA Kis at 6 and 18 months postinfusion (increase range: 5-274% and 8-130%; median, 36% and 54%), respectively. Ki differences between baseline and 6- and 18-month follow-up were statistically significant (P < 0.0002). CONCLUSION: Adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor infusion was safe and well tolerated. Increased [18 F]FDOPA uptake suggests a neurotrophic effect on dopaminergic neurons. © 2019 International Parkinson and Movement Disorder Society.
Asunto(s)
Dependovirus/genética , Terapia Genética , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Enfermedad de Parkinson/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/terapia , Putamen/efectos de los fármacosRESUMEN
PURPOSE OF REVIEW: The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies. RECENT FINDINGS: In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND. The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.
Asunto(s)
Complejo SIDA Demencia/diagnóstico por imagen , Complejo SIDA Demencia/fisiopatología , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Tomografía de Emisión de Positrones/métodos , Amiloide/fisiología , Animales , Antirretrovirales/uso terapéutico , Biomarcadores , Glucosa/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Proteínas tau/fisiologíaRESUMEN
BACKGROUND: Although rates of severe HIV-associated neurocognitive disorders have declined in the post-antiretroviral treatment (ART) era, subtle deficits persist, possibly exacerbated by treatment non-adherence. The actual effects of ART interruption/initiation on brain glucose metabolism as a reflection of viral replication and neuroinflammation remain unclear. Our study investigates how treatment initiation and interruption alter brain glucose metabolism in SIV-infected macaques, using 18F-FDG PET in correlation with plasma and CSF viral loads (VL) and cytokine levels. METHODS: SIV-infected macaques (n = 7) underwent ART initiation only, ART interruption only, or both. Five uninfected animals served as controls. 18F-FDG PET imaging was performed at baseline and 1, 3, and 6 months after treatment modification. Mean and maximum standardized uptake values (SUV) for the whole-brain and subregions were calculated. Plasma and CSF VL and cytokine levels were measured. Paired t tests evaluated acute changes in whole-brain SUV from baseline to 1 month, while mixed-effect linear regression models evaluated changes over multiple timepoints and correlated SUV values with disease markers. RESULTS: ART interruption was associated with increased SUVmean and SUVmax acutely, after 1 month (SUVmean 95% CI [0.044-0.786 g/ml], p = 0.037; SUVmax 95% CI [0.122-3.167 g/ml], p = 0.041). The correlation between SUV and time, however, was not significant when evaluated across all timepoints. Increased SUVmean and SUVmax correlated with decreased CD4+ and CD8+ T-cell counts and increased plasma VL. SUVmax was positively associated with increases in CSF VL, and there were borderline positive associations between SUVmax and IL-2, and between SUVmean and IL-15. The treatment initiation group showed no associations between imaging and disease biomarkers despite viral suppression, reduced cytokine levels, and increased CD4+ and CD8+ T-cell counts. CONCLUSIONS: ART interruption is associated with increased brain glucose metabolism within 1 month of treatment cessation, which, in concert with increased levels of pro-inflammatory cytokines in the CSF, may reflect neuroinflammation in the setting of viral rebound. Although we cannot assert neurologic damage in association with cerebral hypermetabolism, it is a concerning outcome of ART non-adherence. Treatment initiation, meanwhile, did not result in significant changes in brain metabolism. HIV-induced neuroinflammation may require a longer period to abate than our follow-up period allowed.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/virología , Fluorodesoxiglucosa F18/farmacocinética , Tomografía de Emisión de Positrones , Síndrome de Inmunodeficiencia Adquirida del Simio/diagnóstico por imagen , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Animales , Antirretrovirales/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Factores de Tiempo , Resultado del Tratamiento , Carga ViralRESUMEN
PURPOSE: We proposed to detect the in vivo enzyme activity of γ-glutamyl transferase (GGT) within mouse models of human ovarian cancers using catalyCEST MRI with a diamagnetic CEST agent. METHODS: A CEST-FISP MRI protocol and a diamagnetic CEST agent were developed to detect GGT enzyme activity in biochemical solution. A quantitative Michaelis-Menten enzyme kinetics study was performed to confirm that catalyCEST MRI can measure enzyme activity. In vivo catalyCEST MRI studies generated pixel-wise activity maps of GGT activities. Ex vivo fluorescence imaging was performed for validation. RESULTS: CatalyCEST MRI selectively detected two CEST signals from a single CEST agent, whereby one CEST signal was responsive to GGT enzyme activity and the other CEST signal was an unresponsive control signal. The comparison of these CEST signals facilitated in vivo catalyCEST MRI studies that detected high GGT activity in OVCAR-8 tumors, low GGT activity in OVCAR-3 tumors, and low or no GGT activity in muscle tissues. CONCLUSION: CatalyCEST MRI with a diamagnetic CEST agent can detect the level of GGT enzyme activity within in vivo tumor models of human ovarian cancers. Magn Reson Med 77:2005-2014, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias Ováricas/diagnóstico por imagen , Animales , Catálisis , Línea Celular Tumoral , Medios de Contraste/química , Cisteína/química , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes/química , Glicina/química , Humanos , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador , Cinética , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Ováricas/patología , Péptidos/química , gamma-Glutamiltransferasa/metabolismoRESUMEN
Urokinase plasminogen activator (uPA) promotes tumor invasion and metastasis. The monitoring of uPA activity using molecular imaging may have prognostic value and be predictive for response to anti-cancer therapies. However, the detection of in vivo enzyme activity with molecular imaging remains a challenge. To address this problem, we designed a nonmetallic contrast agent, GR-4Am-SA, that can be detected with chemical exchange saturation transfer (CEST) MRI. This agent has a peptide that is cleaved by uPA, which causes a CEST signal at 5.0 ppm to decrease, and also has a salicylic acid moiety that can produce a CEST signal at 9.5 ppm, which is largely unresponsive to enzyme activity. The two CEST signals were used to determine a reaction coordinate, representing the extent of enzyme-catalyzed cleavage of the GR-4Am-SA agent during an experimental study. Initial biochemical studies showed that GR-4Am-SA could detect uPA activity in reducing conditions. Subsequently, we used our catalyCEST MRI protocol with the agent to detect the uPA catalysis of GR-4Am-SA in a flank xenograft model of Capan-2 pancreatic cancer. The results showed an average reaction coordinate of 80% ± 8%, which was strongly dependent on the CEST signal at 5.0 ppm. The relative independence of the reaction coordinate on the CEST signal at 9.5 ppm showed that the detection of enzyme activity was largely independent of the concentration of GR-4Am-SA within the tumor tissue. These results demonstrated the advantages of a single CEST agent with biomarker-responsive and unresponsive signals for reliably assessing enzyme activity during in vivo cancer studies.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Neoplasias Pancreáticas/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Algoritmos , Animales , Línea Celular Tumoral , Medios de Contraste/farmacocinética , Activación Enzimática , Femenino , Ratones , Ratones Desnudos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The simultaneous detection of multiple enzyme activities can improve the specificity of disease diagnoses. We therefore synthesized and characterized a diamagnetic chemical exchange saturation transfer (CEST) MRI contrast agent that can simultaneously detect two enzyme activities. Sulfatase and esterase enzymes cleave the ligands of the CEST agent, releasing salicylic acid that can be detected with CEST MRI. Importantly, both enzymes are required to activate the agent to produce a CEST MRI contrast, and the CEST agent was stable without enzyme treatment. These results established that this diamagnetic CEST MRI contrast agent is a platform technology with a modular design that can be potentially exploited to detect other combinations of enzyme activities, which can expand the armamentarium of contrast agents for molecular imaging.
Asunto(s)
Medios de Contraste , Esterasas/metabolismo , Imagen por Resonancia Magnética/métodos , Sulfatasas/metabolismo , Catálisis , LigandosRESUMEN
A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0â ppm before enzyme activity, and a second CEST signal appears at δ=9.0â ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity.
Asunto(s)
Medios de Contraste/química , Sulfatasas/química , Fenómenos Químicos , Medios de Contraste/metabolismo , Imagen por Resonancia Magnética , Sulfatasas/metabolismoRESUMEN
The pyrrolyldipyrrin motif is found in several naturally occurring prodigiosin pigments. The potential roles of the interactions of prodigiosins with transition metals and the properties of metal-bound pyrrolyldipyrrins, however, have been difficult to assess because of the very limited number of well-characterized stable complexes. Here, we show that the introduction of a meso-aryl substituent and an ethyl ester group during the sequential assembly of the three heterocycles affords a pyrrolyldipyrrin of enhanced coordinating abilities when compared to that of natural prodigiosins. UV-visible absorption studies indicate that this ligand promptly binds Zn(II) ions with 2:1 ligand-to-metal stoichiometry and Cu(II) ions with 1:1 stoichiometry. Notably, no addition of base is required for the formation of the resulting stable complexes. The crystal structures reveal that whereas the tetrahedral zinc center engages two nitrogen donors on each ligand, the pseudosquare planar copper complex features coordination of all three pyrrolic nitrogen atoms and employs the ester group as a neutral ligand. This first example of coordination of a redox-active transition metal within a fully conjugated pyrrolyldipyrrin framework was investigated spectroscopically by electron paramagnetic resonance to show that the 1:1 metal-to-ligand ratio found in the crystal structure is also maintained in solution.
Asunto(s)
Cobre/química , Prodigiosina/química , Pirroles/química , Zinc/química , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría UltravioletaRESUMEN
Copper sulfide nanoparticles (CuS) hold tremendous potential for applications in photothermal therapy (PTT) and photoacoustic imaging (PAI). However, the conventional chemical coprecipitation method often leads to particle agglomeration issues. To overcome this challenge, we utilized polyvinylpyrrolidone (PVP) as a stabilizing agent, resulting in the synthesis of small PVP-CuS nanoparticles named PC10, PCK30, and PC40. Our study aimed to investigate how different molecular weights of PVP influence the nanoparticles' crystalline characteristics and essential properties, especially their photoacoustic and photothermal responses. While prior research on PVP-assisted CuS nanoparticles has been conducted, our study delves deeper into this area, providing insights into optical properties. Remarkably, all synthesized nanoparticles exhibited a crystalline structure, were smaller than 10 nm, and featured an absorbance peak at 1020 nm, indicating their robust photoacoustic and photothermal capabilities. Among these nanoparticles, PC10 emerged as the standout performer, displaying superior photoacoustic properties. Our photothermal experiments demonstrated significant temperature increases in all cases, with PC10 achieving an impressive efficiency of 51%. Moreover, cytotoxicity assays revealed the nanoparticles' compatibility with cells, coupled with an enhanced incidence of apoptosis compared to necrosis. These findings underscore the promising potential of PVP-stabilized CuS nanoparticles for advanced cancer theranostics.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Povidona , Peso Molecular , Fototerapia , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanopartículas/uso terapéuticoRESUMEN
Intratumoral heterogeneity associates with more aggressive disease progression and worse patient outcomes. Understanding the reasons enabling the emergence of such heterogeneity remains incomplete, which restricts our ability to manage it from a therapeutic perspective. Technological advancements such as high-throughput molecular imaging, single-cell omics, and spatial transcriptomics allow recording of patterns of spatiotemporal heterogeneity in a longitudinal manner, thus offering insights into the multiscale dynamics of its evolution. Here, we review the latest technological trends and biological insights from molecular diagnostics as well as spatial transcriptomics, both of which have witnessed burgeoning growth in the recent past in terms of mapping heterogeneity within tumor cell types as well as the stromal constitution. We also discuss ongoing challenges, indicating possible ways to integrate insights across these methods to have a systems-level spatiotemporal map of heterogeneity in each tumor and a more systematic investigation of the implications of heterogeneity for patient outcomes.
RESUMEN
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Asunto(s)
Radioisótopos de Flúor , Sepsis , Animales , Ratas , Lipopolisacáridos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Proteínas Portadoras/metabolismo , Sepsis/diagnóstico por imagen , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico por imagen , Receptores de GABA-A/metabolismoRESUMEN
This study aimed to assess immune activation in tissues by measuring glucose metabolism with 18F-fluorodeoxyglucose (FDG) and investigate the associations of various peripheral markers of disease progression with initiation and interruption of combination antiretroviral therapy in SIV-infected rhesus macaques (Macaca mulatta). Mixed-effect linear models revealed a significant inverse association of peripheral blood CD4+ T cell counts (p < 0.01) and a direct association of plasma viral load (p < 0.01) with the FDG uptake in the spleen, bone marrow, and most clusters of lymph nodes. In contrast, no significant associations were found for the liver and the bowel FDG uptake. We also found no association of the fraction of proliferating peripheral blood T and B lymphocytes with FDG uptake in any analyzed tissues. The bowel FDG uptake of uninfected animals was heterogeneous and reached levels as high as those seen in the bowel or the clusters of lymph nodes or the spleen of high viremic SIV-infected animals, suggesting that factors beyond SIV-induced immune activation dominate the gut FDG uptake.
Asunto(s)
Fluorodesoxiglucosa F18/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Médula Ósea/diagnóstico por imagen , Médula Ósea/metabolismo , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Tracto Gastrointestinal/diagnóstico por imagen , Tracto Gastrointestinal/metabolismo , Humanos , Hígado/diagnóstico por imagen , Hígado/metabolismo , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/metabolismo , Macaca mulatta , Masculino , Radiofármacos/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/diagnóstico , Bazo/diagnóstico por imagen , Bazo/metabolismo , Carga ViralRESUMEN
Purpose: Increased incidence of depression in HIV+ patients is associated with lower adherence to treatment and increased morbidity/mortality. One possible underlying pathophysiology is serotonergic dysfunction. In this study, we used an animal model of HIV, the SIV-infected macaque, to longitudinally image serotonin transporter (SERT) expression before and after inoculation, using 11C-DASB (SERT ligand) PET imaging. Methods: We infected seven rhesus macaques with a neurovirulent SIV strain and imaged them at baseline and multiple time points after inoculation (group A). Pyrosequencing methylation analysis of the SERT promoter region was performed. We also measured SERT mRNA/protein in brain single-cell suspensions from another group (group B) of SIV-infected animals (n = 13). Results: Despite some animals showing early fluctuations, 86% of our group A animals eventually showed a net increase in midbrain/thalamus binding potential (BPND) over the course of their disease (mean increased binding between last time point and baseline = 30.2% and 32.2%, respectively). Repeated-measures mixed-model analysis showed infection duration to be predictive of midbrain BPND (p = 0.039). Thalamic BPND was statistically significantly associated with multiple CSF cytokines (P < 0.05). There was higher SERT protein levels in the second group (group B) of SIV-infected animals with SIV encephalitis (SIVE) compared to those without SIVE (p = 0.014). There were no longitudinal changes in SERT gene promoter region percentage methylation between baselines and last time points in group A animals. Conclusion: Upregulated SERT leading to lower synaptic levels of serotonin is a possible mechanism of depression in HIV+ patients, and extrapolating our conclusions from SIV to HIV should be sought using translational human studies.
RESUMEN
The exact cause of neurocognitive dysfunction in HIV-positive patients despite successful control of the infection in the periphery is not completely understood. One suggested mechanism is a vicious cycle of microglial activation and release of proinflammatory chemokines/cytokines that eventually leads to neuronal loss and dysfunction. However, the exact role of microglial activation in the earliest stages of the infection with high cerebrospinal fluid (CSF) viral loads (VL) is unclear. In this study, we imaged the translocator protein (TSPO), a mitochondrial membrane receptor known to be upregulated in activated microglia and macrophages, in rhesus macaques before and multiple times after inoculation with a neurotropic simian immunodeficiency virus (SIV) strain (SIVsm804E), using 18F-DPA714 positron emission tomography (PET). The whole-brain standardized uptake values of TSPO at equilibrium reflecting total binding (SUVT) and binding potentials (BPND) were calculated and correlated with CSF and serum markers of disease, and a corresponding postmortem immunostaining analysis was also performed. SUVT was found to be inversely correlated with both CSF VL and monocyte chemoattractant protein 1 (MCP-1) levels. In SIV-infected macaques with very high CSF VL at necropsy (>106 copies/ml), we found decreased TSPO binding by PET, and this was supported by immunostaining which showed glial and neuronal apoptosis rather than microglial activation. On the other hand, with only moderately elevated CSF VL (â¼104 copies/ml), we found increased TSPO binding as well as focal and diffuse microglial activation on immunostaining. Our results in the SIV-infected macaque model provide insights into the relationship between HIV neuropathology and CSF VL at various stages of the disease.IMPORTANCE Neurological and cognitive problems are a common complication of HIV infection and are prevalent even in treated individuals. Although the molecular processes underlying brain involvement with HIV are not completely understood, inflammation is suspected to play a significant role. Our work presents an in vivo assessment of neuroinflammation in an animal model of HIV, the simian immunodeficiency virus (SIV)-infected rhesus macaque. Using positron emission tomography (PET) imaging, we identified changes in brain inflammation after inoculation with SIV over time. Interestingly, we found decreased binding of the PET ligand in the presence of very high cerebrospinal fluid (CSF) viral loads. These findings were supported by immunostaining which showed marked glial loss instead of inflammation. This study provides insight into glial and neuronal changes associated with very high CSF viral load and could reflect similar changes occurring in HIV-infected patients.
Asunto(s)
Encéfalo/patología , Inflamación/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/líquido cefalorraquídeo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral , Animales , Encéfalo/inmunología , Encéfalo/virología , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/fisiopatología , Inflamación/patología , Macaca mulatta , Masculino , Neuroglía/patología , Neuroglía/virología , Tomografía de Emisión de Positrones , Virus de la Inmunodeficiencia de los SimiosRESUMEN
INTRODUCTION: HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. MATERIALS AND METHODS: Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. RESULTS: Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. CONCLUSION: The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.
Asunto(s)
Encéfalo/patología , Infecciones por VIH/complicaciones , Infecciones por VIH/patología , Trastornos Mentales/etiología , Trastornos Mentales/patología , Animales , Conducta Animal , VIH-1 , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas TransgénicasRESUMEN
PURPOSE: The detection of enzyme activities and evaluation of enzyme inhibitors have been challenging with magnetic resonance imaging (MRI). To address this need, we have developed a diamagnetic, nonmetallic contrast agent and a protocol known as catalyCEST MRI that uses chemical exchange saturation transfer (CEST) to detect enzyme activity as well as enzyme inhibition. PROCEDURES: We synthesized a diamagnetic MRI contrast agent that has enzyme responsive and enzyme unresponsive CEST signals. We tested the ability of this agent to detect the activity of kallikrein 6 (KLK6) in biochemical solutions, in vitro and in vivo, with and without a KLK6 inhibitor. RESULTS: The agent detected KLK6 activity in solution and also detected KLK6 inhibition by antithrombin III. KLK6 activity was detected during in vitro studies with HCT116 colon cancer cells, relative to the detection of almost no activity in a KLK6-knockdown HCT116 cell line and HCT116 cells treated with antithrombin III inhibitor. Finally, strong enzyme activity was detected within an in vivo HCT116 tumor model, while lower enzyme activity was detected in a KLK6 knockdown tumor model and in the HCT116 tumor model treated with antithrombin III inhibitor. In all cases, comparisons of the enzyme responsive and enzyme unresponsive CEST signals were critical for the detection of enzyme activity. CONCLUSIONS: This study has established that catalyCEST MRI with an exogenous diaCEST agent can evaluate enzyme activity and inhibition in solution, in vitro and in vivo.