Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Glob Chang Biol ; 29(15): 4412-4429, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277945

RESUMEN

Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.


Asunto(s)
Ecosistema , Microbiota , Carbono/metabolismo , Suelo , Microbiología del Suelo , Cambio Climático , Nitrógeno/análisis
2.
Glob Chang Biol ; 27(7): 1322-1325, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33372345

RESUMEN

Emerging evidence indicates that enzyme-catalyzed transformation and degradation of soil organic matter at the ecosystem scale is more likely driven by microbial functional gene abundance, rather than short term induction/repression responses. In this paper, we are trying to highlight the potential links between microbial functional gene abundance and soil extracellular enzyme activity. Those links will likely offer a new path for optimizing the model performance of microbial-mediated soil C dynamics from microbial functional gene perspectives.


Asunto(s)
Micobioma , Suelo , Carbono , Ecosistema , Nitrógeno , Microbiología del Suelo
3.
Glob Chang Biol ; 26(4): 1944-1952, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31909849

RESUMEN

Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.

4.
Glob Chang Biol ; 26(9): 5077-5086, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32529708

RESUMEN

Increased human-derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N-induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N-induced P limitation. Here we show, using a meta-analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short-term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long-term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short- or long-term studies. Together, these results suggest that N-induced P limitation in ecosystems is alleviated in the long-term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.


Asunto(s)
Nitrógeno , Fósforo , Biomasa , Carbono , Ecosistema , Humanos , Suelo
5.
Glob Chang Biol ; 24(7): 2818-2827, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29505170

RESUMEN

The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a greater incidence of certain soil-borne diseases.


Asunto(s)
Bacterias/clasificación , Sequías , Hongos/clasificación , Pradera , Microbiología del Suelo , Australia , Microbiota , América del Norte , Suelo/química
6.
Am J Bot ; 105(7): 1133-1141, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30011080

RESUMEN

PREMISE OF THE STUDY: Productivity in drylands may depend on the sensitivity of interactions between plants and biocrusts. Given future climate variability, it is essential to understand how interactions may be context-dependent with precipitation regime. Furthermore, little is known about the additional interactions of these producers with the belowground biota (e.g., roots, fungi, microarthropods). We evaluated the effect of removal (such as could occur following disturbance) and net interaction of plants and biocrusts and additionally manipulated the abiotic and biotic context. METHODS: We established field mesocosms containing grass (Bouteloua gracilis) and surrounding biocrusts, then clipped the plant or heat-sterilized the biocrust to simulate the loss of dryland producers. To test for context-dependency on the precipitation pattern, we imposed a large, infrequent or small, frequent precipitation regime. A mesh barrier was used to impede belowground connections that may couple the dynamics of producers. Productivity was assessed by plant biomass and biocrust chlorophyll content. KEY RESULTS: Biocrusts increased chlorophyll content more when plants were removed than when they were present in the first year, but only in the small, frequent precipitation regime. In contrast, plant growth slightly declined with biocrust removal. Plant biomass and biocrust chlorophyll content were negatively correlated in the second year, suggesting net competition. Belowground connectivity weakly promoted overall biocrust relative productivity, but was generally weakly detrimental to plant relative productivity. CONCLUSIONS: Altered precipitation patterns can amplify positive effects of plant removal on biocrust producers. Furthermore, we discovered that belowground networks contributed to dryland productivity by promoting biocrust performance.


Asunto(s)
Biota/fisiología , Plantas , Animales , Artrópodos/fisiología , Clorofila , Clima , Hongos/fisiología , Raíces de Plantas/fisiología , Lluvia
7.
New Phytol ; 214(4): 1518-1526, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28233327

RESUMEN

The carbon use efficiency of plants (CUEa ) and microorganisms (CUEh ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUEa and CUEh counterbalance at a large scale, stabilizing microbial growth (µ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUEa , estimated from satellite imagery, with locally determined soil CUEh for 100 globally distributed sites. Ecosystem CUEe , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUEa and CUEh were inversely related. At the global scale, the apparent temperature sensitivity of CUEh with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C-1 ). CUEa and CUEe were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C-1 , respectively. These trends constrain the ratio µ : GPP (= (CUEa  × CUEh )/(1 - CUEe )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a µ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale.


Asunto(s)
Carbono/metabolismo , Plantas/metabolismo , Microbiología del Suelo , Biomasa , Secuestro de Carbono , Ecosistema , Imágenes Satelitales , Suelo/química , Temperatura
8.
Glob Chang Biol ; 23(8): 3064-3075, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28039909

RESUMEN

Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.


Asunto(s)
Carbono/química , Hojas de la Planta , Temperatura , Alnus , Cambio Climático , Ecosistema , Ríos
9.
Nature ; 462(7274): 795-8, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20010687

RESUMEN

Biota can be described in terms of elemental composition, expressed as an atomic ratio of carbon:nitrogen:phosphorus (refs 1-3). The elemental stoichiometry of microoorganisms is fundamental for understanding the production dynamics and biogeochemical cycles of ecosystems because microbial biomass is the trophic base of detrital food webs. Here we show that heterotrophic microbial communities of diverse composition from terrestrial soils and freshwater sediments share a common functional stoichiometry in relation to organic nutrient acquisition. The activities of four enzymes that catalyse the hydrolysis of assimilable products from the principal environmental sources of C, N and P show similar scaling relationships over several orders of magnitude, with a mean ratio for C:N:P activities near 1:1:1 in all habitats. We suggest that these ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth. Because ecoenzymatic activities intersect the stoichiometric and metabolic theories of ecology, they provide a functional measure of the threshold at which control of community metabolism shifts from nutrient to energy flow.


Asunto(s)
Carbono/metabolismo , Ecosistema , Enzimas/metabolismo , Sedimentos Geológicos/química , Nitrógeno/metabolismo , Fósforo/metabolismo , Microbiología del Suelo , Biomasa , Pruebas de Enzimas , Cadena Alimentaria , Sedimentos Geológicos/microbiología , Plantas/metabolismo , Ríos , Estados Unidos , Humedales
10.
Mol Ecol ; 23(6): 1364-1378, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24112704

RESUMEN

Nitrogen (N) deposition rates are increasing globally due to anthropogenic activities. Plant community responses to N are often attributed to altered competitive interactions between plants, but may also be a result of microbial responses to N, particularly root-associated fungi (RAF), which are known to affect plant fitness. In response to N, Deschampsia cespitosa, a codominant plant in the alpine tundra at Niwot Ridge (CO), increases in abundance, while Geum rossii, its principal competitor, declines. Importantly, G. rossii declines with N even in the absence of its competitor. We examined whether contrasting host responses to N are associated with altered plant-fungal symbioses, and whether the effects of N are distinct from effects of altered plant competition on RAF, using 454 pyrosequencing. Host RAF communities were distinct (only 9.4% of OTUs overlapped). N increased RAF diversity in G. rossii, but decreased it in D. cespitosa. D. cespitosa RAF communities were more responsive to N than G. rossii RAF communities, perhaps indicating a flexible microbial community aids host adaptation to nutrient enrichment. Effects of removing D. cespitosa were distinct from effects of N on G. rossii RAF, and D. cespitosa presence reversed RAF diversity response to N. The most dominant G. rossii RAF order, Helotiales, was the most affected by N, declining from 83% to 60% of sequences, perhaps indicating a loss of mutualists under N enrichment. These results highlight the potential importance of belowground microbial dynamics in plant responses to N deposition.


Asunto(s)
Hongos/fisiología , Geum/microbiología , Nitrógeno/química , Poaceae/fisiología , Microbiología del Suelo , Suelo/química , Colorado , ADN de Hongos/genética , Ecosistema , Modelos Genéticos , Filogenia , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
11.
Adv Sci (Weinh) ; 11(35): e2308176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024521

RESUMEN

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Suelo/química , Ecosistema , Clima , Cambio Climático
12.
Ecol Lett ; 16(7): 930-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23627730

RESUMEN

Carbon use efficiency (CUE) is a fundamental parameter for ecological models based on the physiology of microorganisms. CUE determines energy and material flows to higher trophic levels, conversion of plant-produced carbon into microbial products and rates of ecosystem carbon storage. Thermodynamic calculations support a maximum CUE value of ~ 0.60 (CUE max). Kinetic and stoichiometric constraints on microbial growth suggest that CUE in multi-resource limited natural systems should approach ~ 0.3 (CUE max /2). However, the mean CUE values reported for aquatic and terrestrial ecosystems differ by twofold (~ 0.26 vs. ~ 0.55) because the methods used to estimate CUE in aquatic and terrestrial systems generally differ and soil estimates are less likely to capture the full maintenance costs of community metabolism given the difficulty of measurements in water-limited environments. Moreover, many simulation models lack adequate representation of energy spilling pathways and stoichiometric constraints on metabolism, which can also lead to overestimates of CUE. We recommend that broad-scale models use a CUE value of 0.30, unless there is evidence for lower values as a result of pervasive nutrient limitations. Ecosystem models operating at finer scales should consider resource composition, stoichiometric constraints and biomass composition, as well as environmental drivers, to predict the CUE of microbial communities.


Asunto(s)
Carbono/metabolismo , Microbiota/fisiología , Modelos Biológicos , Termodinámica
14.
Biol Rev Camb Philos Soc ; 98(4): 1184-1199, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36914985

RESUMEN

Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.


Asunto(s)
Carbono , Celulasas , Suelo , Secuestro de Carbono
15.
Mycologia ; 103(1): 10-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20943560

RESUMEN

The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils.


Asunto(s)
Ecosistema , Hongos/aislamiento & purificación , Poaceae/microbiología , Microbiología del Suelo , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Hongos/clasificación , Hongos/genética , Variación Genética , Datos de Secuencia Molecular , New Mexico , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Distribución Aleatoria , Rizosfera , Alineación de Secuencia
16.
Ecology ; 91(5): 1455-65, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20503877

RESUMEN

The study of metabolic scaling in stream ecosystems is complicated by their openness to external resource inputs. For heterotrophic bacteria, which are a large component of stream metabolism, it may be possible to integrate the effects of resource availability and temperature on production using metabolic scaling theory and the kinetics of extracellular enzyme activity (EEA) associated with the degradation of major nutrient pools. With this goal, we analyzed previously published data on EEA and bacterial production for two rivers in northwestern Ohio, USA. The EEA data included estimates of apparent Vmax, a measure of catalytic capacity, and apparent Km, a measure of available substrate concentration, for six extracellular enzymes (alpha-glucosidase, beta-glucosidase, aminopeptidase, protease, phosphatase, and acetyl esterase). Sampling was done over an annual cycle with a temperature range of 4 31 degrees C, while EEA assays were conducted at 20 degrees C. The EEA kinetic measures were scaled to ambient stream temperature using an activation energy (Ea) of 0.5 eV (8.01 x 10(-20) J) and converted to estimates of the turnover rate (St) of their associated substrate pools. The St values associated with protein utilization, the largest substrate pool, had the strongest relationship to bacterial production (r2 = 0.49-0.52); those for carbohydrate utilization, the smallest substrate pool, had the weakest (r2= 0.09-0.15). Comparisons of apparent Ea over the annual cycle showed that the trophic basis of bacterial production switched from relatively high carbohydrate consumption in autumn and winter to relatively high protein consumption in spring and summer, corresponding to seasonal dynamics in plant litter inputs and algal production, respectively. Over the annual cycle, the summed substrate generation rate of the six enzymes was similar in magnitude and strongly correlated with bacterial production (r2 = 0.56). This approach combines effects of substrate pool size, catalytic capacity, and temperature on bacterial production and could be used to compare ecosystems along latitudinal gradients where resource, rather than temperature, effects on metabolic scaling are of greater magnitude.


Asunto(s)
Bacterias/aislamiento & purificación , Ecosistema , Ríos , Temperatura , Microbiología del Agua , Modelos Biológicos
17.
Microb Ecol ; 60(4): 885-93, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20556375

RESUMEN

The degradation of detrital organic matter and assimilation of carbon (C), nitrogen (N), and phosphorus (P) by heterotrophic microbial communities is mediated by enzymes released into the environment (ecoenzymes). For the attached microbial communities of soils and freshwater sediments, the activities of ß-glucosidase, ß-N-acetylglucosaminidase, leucine aminopeptidase, and phosphatase show consistent stoichiometric patterns. To determine whether similar constraints apply to planktonic communities, we assembled data from nine studies that include measurements of these enzyme activities along with microbial productivity. By normalizing enzyme activity to productivity, we directly compared the ecoenzymatic stoichiometry of aquatic biofilm and bacterioplankton communities. The relationships between ß-glucosidase and α-glucosidase and ß-glucosidase and ß-N-acetylglucosaminidase were statistically indistinguishable for the two community types, while the relationships between ß-glucosidase and phosphatase and ß-glucosidase and leucine aminopeptidase significantly differed. For ß-glucosidase vs. phosphatase, the differences in slope (biofilm 0.65, plankton 1.05) corresponded with differences in the mean elemental C:P ratio of microbial biomass (60 and 106, respectively). For ß-glucosidase vs. leucine aminopeptidase, differences in slope (0.80 and 1.02) did not correspond to differences in the mean elemental C:N of biomass (8.6 and 6.6). ß-N-Acetylglucosaminidase activity in biofilms was significantly greater than that of plankton, suggesting that aminosaccharides were a relatively more important N source for biofilms, perhaps because fungi are more abundant. The slopes of ß-glucosidase vs. (ß-N-acetylglucosaminidase + leucine aminopeptidase) regressions (biofilm 1.07, plankton 0.94) corresponded more closely to the estimated difference in mean biomass C:N. Despite major differences in physical structure and trophic organization, biofilm and plankton communities have similar ecoenzymatic stoichiometry in relation to productivity and biomass composition. These relationships can be integrated into the stoichiometric and metabolic theories of ecology and used to analyze community metabolism in relation to resource constraints.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas , Agua Dulce/microbiología , Plancton/enzimología , Acetilglucosaminidasa/química , Acetilglucosaminidasa/metabolismo , Bacterias/química , Fenómenos Fisiológicos Bacterianos , Ecosistema , Agua Dulce/química , Glucosidasas/química , Glucosidasas/metabolismo , Cinética , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Plancton/química , Plancton/fisiología , Transporte de Proteínas , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo
18.
Mycologia ; 102(5): 1012-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20943502

RESUMEN

Communities of root-associated fungi (RAF) commonly have been studied under the auspices of arbuscular mycorrhizal fungi (AMF) or ectomycorrhizal fungi. However many studies now indicate that other groups of endophytic RAF, including dark septate endophytes (DSE) are more abundant in some plants and environments. The common forage grass, Bouteloua gracilis, was used as a model to examine whether RAF also colonize different organs within the same plant and to compare RAF communities from sites across North America, spanning the latitudinal range of B. gracilis (from Canada to Mexico). We compared the RAF communities of organs within individual plants at one site and within plant roots among six sites. With the possible exception of one group related to genus Paraphaeosphaeria there was little evidence that RAF colonized vertically beyond the crowns. Furthermore, although there was some variation in the constitution of rare members of the RAF communities, several taxonomically related groups dominated the RAF community at all sites. These dominant taxa included members in the Pleosporales (related to the DSE, Paraphaeosphaeria spp.), Agaricales (related to Moniliophthora spp., or Campanella spp.) and Hypocreales (related to Fusarium spp.). AMF were notable by their near absence. Similar phylotypes from the dominant groups clustered around adjacent sites so that similarity of the RAF communities was negatively correlated to site inter-distance and the RAF communities appeared to group by country. These results increase the possibility that at least some of these common and widely distributed core members of the RAF community form important, intimate and long lasting relationships with grasses.


Asunto(s)
Hongos/clasificación , Hongos/crecimiento & desarrollo , Raíces de Plantas/microbiología , Poaceae/microbiología , Antibacterianos/farmacología , Clima , ADN de Hongos/genética , ADN de Plantas/genética , Ecosistema , Geografía , México , New Mexico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Saskatchewan , South Dakota
19.
Ecol Appl ; 19(5): 1135-46, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19688922

RESUMEN

Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly decomposing cottonwood litter with a high potential for N immobilization. As a result, retention and mineralization of litter N within these forests is controlled by hydrologic connectivity to the river, which affects litter export and in situ decomposition.


Asunto(s)
Ecosistema , Elaeagnaceae , Populus , Nitrógeno/análisis , Hojas de la Planta , Ríos/química , Ríos/microbiología
20.
Ecol Lett ; 11(11): 1252-1264, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18823393

RESUMEN

Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.


Asunto(s)
Ecosistema , Enzimas/metabolismo , Suelo/análisis , Clima , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Análisis de Componente Principal , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA