RESUMEN
We studied growth of the mountain birch, and the role of foliage phenols, nitrogen, and variance in the timing of bud burst, as potential defensive characters, in Finnish Lapland in 1975-1979. Annual and local variation both in phenol and nitrogen concentration of foliage were significant. Individual trees retained their position in the foliage and nitrogen distribution of the population in successive years, as well as in the order of leaf flush in spring. Growth of twigs, mature leaf size, and ability of trees to recover in the year following artificial defoliation correlated positively with the sum of degree days in the previous growing season. Foliage nitrogen correlated negatively with foliage phenols in within-site comparisons. Twig growth correlated negatively with foliage phenols, particularly in growing seasons following cool summers, but did not correlate with foliage nitrogen. Birches flushing early did not grow more than birches flushing late. Between-site differences in foliage phenol content were mainly determined by abiotic conditions, like temperature and nutrient availability. In a between-site comparison insect chewing marks in leaves correlated positively with foliage phenols as well as with nitrogen; intensity of invertebrate predation presumably explained variable herbivory between the sites. In a within-site comparison trees with the highest foliage phenol content had few herbivores only at the site with the highest average phenol level.
RESUMEN
A hypothesis is put forward that the long-lasting inducible responses of trees to herbivores, particularly lepidopteran defoliators, may not be active defensive responses, but a by-product of mechanisms which rearrange the plant carbon/nutrient balance in response to nutrient stress caused by defoliation. When defoliation removes the foliage nutrients of trees growing in nutrient-poor soils, it increases nutrient stress wich in turn results in a high production of carbon-based allelochemicals. The excess of carbon that cannot be diverted to growth due to nutrient stress is diverted to the production of plant secondary metabolites. The level of carbon-based secondary substances decays gradually depending on the rate at which nutrient stress is relaxed after defoliation. In nutrient-poor soils and in plant species with slow compensatory nutrient uptake rates the responses induced by defoliation can have relaxation times of several years. The changes in leaf nitrogen and phenolic content of mountain birch support this nutrient stress hypothesis. Defoliation reduces leaf nitrogen content while phenolic content increases. These responses of mountain birch to defoliation are relaxed within 3-4 years.