Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037918

RESUMEN

Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.

2.
Toxicol Sci ; 173(2): 313-335, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31750923

RESUMEN

Emerging data indicate that structural analogs of bisphenol A (BPA) such as bisphenol S (BPS), tetrabromobisphenol A (TBBPA), and bisphenol AF (BPAF) have been introduced into the market as substitutes for BPA. Our previous study compared in vitro testicular toxicity using murine C18-4 spermatogonial cells and found that BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS. Recently, we developed a novel in vitro three-dimensional (3D) testicular cell co-culture model, enabling the classification of reproductive toxic substances. In this study, we applied the testicular cell co-culture model and employed a high-content image (HCA)-based single-cell analysis to further compare the testicular toxicities of BPA and its analogs. We also developed a machine learning (ML)-based HCA pipeline to examine the complex phenotypic changes associated with testicular toxicities. We found dose- and time-dependent changes in a wide spectrum of adverse endpoints, including nuclear morphology, DNA synthesis, DNA damage, and cytoskeletal structure in a single-cell-based analysis. The co-cultured testicular cells were more sensitive than the C18 spermatogonial cells in response to BPA and its analogs. Unlike conventional population-averaged assays, single-cell-based assays not only showed the levels of the averaged population, but also revealed changes in the sub-population. Machine learning-based phenotypic analysis revealed that treatment of BPA and its analogs resulted in the loss of spatial cytoskeletal structure, and an accumulation of M phase cells in a dose- and time-dependent manner. Furthermore, treatment of BPAF-induced multinucleated cells, which were associated with altered DNA damage response and impaired cellular F-actin filaments. Overall, we demonstrated a new and effective means to evaluate multiple toxic endpoints in the testicular co-culture model through the combination of ML and high-content image-based single-cell analysis. This approach provided an in-depth analysis of the multi-dimensional HCA data and provided an unbiased quantitative analysis of the phenotypes of interest.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Bifenilos Polibrominados/toxicidad , Análisis de la Célula Individual , Sulfonas/toxicidad , Testículo/efectos de los fármacos , Testículo/ultraestructura , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Daño del ADN/efectos de los fármacos , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos BALB C , Fenotipo , Espermatogonias/efectos de los fármacos
3.
Reprod Toxicol ; 79: 96-123, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29925041

RESUMEN

Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Animales , Femenino , Humanos , Masculino , Salud Reproductiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA