Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32833011

RESUMEN

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Asunto(s)
Síndrome de Angelman/genética , Predisposición Genética a la Enfermedad , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/genética , Impresión Genómica/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Isoformas de Proteínas/genética
2.
Mol Psychiatry ; 26(11): 6845-6867, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33863995

RESUMEN

Parvalbumin interneurons (PVIs) are affected in many psychiatric disorders including schizophrenia (SCZ), however the mechanism remains unclear. FXR1, a high confident risk gene for SCZ, is indispensable but its role in the brain is largely unknown. We show that deleting FXR1 from PVIs of medial prefrontal cortex (mPFC) leads to reduced PVI excitability, impaired mPFC gamma oscillation, and SCZ-like behaviors. PVI-specific translational profiling reveals that FXR1 regulates the expression of Cacna1h/Cav3.2 a T-type calcium channel implicated in autism and epilepsy. Inhibition of Cav3.2 in PVIs of mPFC phenocopies whereas elevation of Cav3.2 in PVIs of mPFC rescues behavioral deficits resulted from FXR1 deficiency. Stimulation of PVIs using a gamma oscillation-enhancing light flicker rescues behavioral abnormalities caused by FXR1 deficiency in PVIs. This work unveils the function of a newly identified SCZ risk gene in SCZ-relevant neurons and identifies a therapeutic target and a potential noninvasive treatment for psychiatric disorders.


Asunto(s)
Parvalbúminas , Esquizofrenia , Humanos , Interneuronas/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
3.
Cereb Cortex ; 27(7): 3736-3751, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600849

RESUMEN

The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-ß-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders.


Asunto(s)
Hipoxia de la Célula/fisiología , Corteza Cerebral/citología , Células Ependimogliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Oxígeno/metabolismo , Antígenos/genética , Antígenos/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Células Ependimogliales/efectos de los fármacos , Proteína de Unión a los Ácidos Grasos 7/genética , Proteína de Unión a los Ácidos Grasos 7/metabolismo , Feto , Edad Gestacional , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Antígeno Ki-67/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/efectos de los fármacos , Oxígeno/farmacología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(37): E3919-28, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197082

RESUMEN

Before the human cortex is able to process sensory information, young postmitotic neurons must maintain occasional bursts of action-potential firing to attract and keep synaptic contacts, to drive gene expression, and to transition to mature membrane properties. Before birth, human subplate (SP) neurons are spontaneously active, displaying bursts of electrical activity (plateau depolarizations with action potentials). Using whole-cell recordings in acute cortical slices, we investigated the source of this early activity. The spontaneous depolarizations in human SP neurons at midgestation (17-23 gestational weeks) were not completely eliminated by tetrodotoxin--a drug that blocks action potential firing and network activity--or by antagonists of glutamatergic, GABAergic, or glycinergic synaptic transmission. We then turned our focus away from standard chemical synapses to connexin-based gap junctions and hemichannels. PCR and immunohistochemical analysis identified the presence of connexins (Cx26/Cx32/Cx36) in the human fetal cortex. However, the connexin-positive cells were not found in clusters but, rather, were dispersed in the SP zone. Also, gap junction-permeable dyes did not diffuse to neighboring cells, suggesting that SP neurons were not strongly coupled to other cells at this age. Application of the gap junction and hemichannel inhibitors octanol, flufenamic acid, and carbenoxolone significantly blocked spontaneous activity. The putative hemichannel antagonist lanthanum alone was a potent inhibitor of the spontaneous activity. Together, these data suggest that connexin hemichannels contribute to spontaneous depolarizations in the human fetal cortex during the second trimester of gestation.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Conexinas/metabolismo , Fenómenos Electrofisiológicos , Feto/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Calcio/farmacología , Corteza Cerebral/efectos de los fármacos , Conexina 26 , Conexinas/genética , Fenómenos Electrofisiológicos/efectos de los fármacos , Espacio Extracelular/metabolismo , Femenino , Feto/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/fisiología , Edad Gestacional , Humanos , Lantano/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
5.
Front Cell Neurosci ; 18: 1341141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357436

RESUMEN

Introduction: Down syndrome, caused by trisomy 21, is a complex developmental disorder associated with intellectual disability and reduced growth of multiple organs. Structural pathologies are present at birth, reflecting embryonic origins. A fundamental unanswered question is how an extra copy of human chromosome 21 contributes to organ-specific pathologies that characterize individuals with Down syndrome, and, relevant to the hallmark intellectual disability in Down syndrome, how trisomy 21 affects neural development. We tested the hypothesis that trisomy 21 exerts effects on human neural development as early as neural induction. Methods: Bulk RNA sequencing was performed on isogenic trisomy 21 and euploid human induced pluripotent stem cells (iPSCs) at successive stages of neural induction: embryoid bodies at Day 6, early neuroectoderm at Day 10, and differentiated neuroectoderm at Day 17. Results: Gene expression analysis revealed over 1,300 differentially expressed genes in trisomy 21 cells along the differentiation pathway compared to euploid controls. Less than 5% of the gene expression changes included upregulated chromosome 21 encoded genes at every timepoint. Genes involved in specific growth factor signaling pathways (WNT and Notch), metabolism (including oxidative stress), and extracellular matrix were altered in trisomy 21 cells. Further analysis uncovered heterochronic expression of genes. Conclusion: Trisomy 21 impacts discrete developmental pathways at the earliest stages of neural development. The results suggest that metabolic dysfunction arises early in embryogenesis in trisomy 21 and may affect development and function more broadly.

6.
Cell Rep ; 43(6): 114330, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865241

RESUMEN

The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Neuronas , ARN Mensajero , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Estrés Fisiológico/genética , Regiones no Traducidas 5'/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Repeticiones de Trinucleótidos/genética , Expansión de Repetición de Trinucleótido/genética
7.
Stem Cell Reports ; 19(6): 796-816, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38759644

RESUMEN

Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.


Asunto(s)
Encéfalo , Organoides , Humanos , Organoides/citología , Organoides/metabolismo , Encéfalo/citología , Reproducibilidad de los Resultados , Prosencéfalo/citología
8.
Cell Rep Methods ; 3(2): 100409, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936070

RESUMEN

Our machine-learning framework, brain and organoid manifold alignment (BOMA), first performs a global alignment of developmental gene expression data between brains and organoids. It then applies manifold learning to locally refine the alignment, revealing conserved and specific developmental trajectories across brains and organoids. Using BOMA, we found that human cortical organoids better align with certain brain cortical regions than with other non-cortical regions, implying organoid-preserved developmental gene expression programs specific to brain regions. Additionally, our alignment of non-human primate and human brains reveals highly conserved gene expression around birth. Also, we integrated and analyzed developmental single-cell RNA sequencing (scRNA-seq) data of human brains and organoids, showing conserved and specific cell trajectories and clusters. Further identification of expressed genes of such clusters and enrichment analyses reveal brain- or organoid-specific developmental functions and pathways. Finally, we experimentally validated important specific expressed genes through the use of immunofluorescence. BOMA is open-source available as a web tool for community use.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Animales , Organoides/metabolismo
9.
Nat Commun ; 14(1): 3801, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365192

RESUMEN

Fragile X messenger ribonucleoprotein 1 protein (FMRP) binds many mRNA targets in the brain. The contribution of these targets to fragile X syndrome (FXS) and related autism spectrum disorder (ASD) remains unclear. Here, we show that FMRP deficiency leads to elevated microtubule-associated protein 1B (MAP1B) in developing human and non-human primate cortical neurons. Targeted MAP1B gene activation in healthy human neurons or MAP1B gene triplication in ASD patient-derived neurons inhibit morphological and physiological maturation. Activation of Map1b in adult male mouse prefrontal cortex excitatory neurons impairs social behaviors. We show that elevated MAP1B sequesters components of autophagy and reduces autophagosome formation. Both MAP1B knockdown and autophagy activation rescue deficits of both ASD and FXS patients' neurons and FMRP-deficient neurons in ex vivo human brain tissue. Our study demonstrates conserved FMRP regulation of MAP1B in primate neurons and establishes a causal link between MAP1B elevation and deficits of FXS and ASD.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Adulto , Humanos , Animales , Ratones , Masculino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Trastorno del Espectro Autista/genética , Conducta Social , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
10.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820724

RESUMEN

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Enfermedades Mitocondriales , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Trastorno del Espectro Autista/metabolismo , Neuronas/metabolismo , Neurogénesis , Enfermedades Mitocondriales/metabolismo , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/metabolismo
11.
Cell Chem Biol ; 27(12): 1510-1520.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32966807

RESUMEN

Genetic aberrations of the UBE3A gene encoding the E3 ubiquitin ligase E6AP underlie the development of Angelman syndrome (AS). Approximately 10% of AS individuals harbor UBE3A genes with point mutations, frequently resulting in the expression of full-length E6AP variants with defective E3 activity. Since E6AP exists in two states, an inactive and an active one, we hypothesized that distinct small molecules can stabilize the active state and that such molecules may rescue the E3 activity of AS-derived E6AP variants. Therefore, we established an assay that allows identifying modulators of E6AP in a high-throughput format. We identified several compounds that not only stimulate wild-type E6AP but also rescue the E3 activity of certain E6AP variants. Moreover, by chemical cross-linking coupled to mass spectrometry we provide evidence that the compounds stabilize an active conformation of E6AP. Thus, these compounds represent potential lead structures for the design of drugs for AS treatment.


Asunto(s)
Síndrome de Angelman/genética , Mutación Puntual , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Conformación Proteica , Ubiquitina-Proteína Ligasas/química
12.
Nat Commun ; 8: 15038, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436452

RESUMEN

Angelman syndrome (AS) is a neurogenetic disorder caused by deletion of the maternally inherited UBE3A allele and is characterized by developmental delay, intellectual disability, ataxia, seizures and a happy affect. Here, we explored the underlying pathophysiology using induced pluripotent stem cell-derived neurons from AS patients and unaffected controls. AS-derived neurons showed impaired maturation of resting membrane potential and action potential firing, decreased synaptic activity and reduced synaptic plasticity. These patient-specific differences were mimicked by knocking out UBE3A using CRISPR/Cas9 or by knocking down UBE3A using antisense oligonucleotides. Importantly, these phenotypes could be rescued by pharmacologically unsilencing paternal UBE3A expression. Moreover, selective effects of UBE3A disruption at late stages of in vitro development suggest that changes in action potential firing and synaptic activity may be secondary to altered resting membrane potential. Our findings provide a cellular phenotype for investigating pathogenic mechanisms underlying AS and identifying novel therapeutic strategies.


Asunto(s)
Potenciales de Acción/fisiología , Síndrome de Angelman/patología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Potenciales de Acción/genética , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Sci Rep ; 6: 25368, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27146458

RESUMEN

Angelman Syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function of the maternally inherited copy of UBE3A, an imprinted gene expressed biallelically in most tissues, but expressed exclusively from the maternal allele in neurons. Active transcription of the neuron-specific long non-coding RNA (lncRNA), UBE3A-ATS, has been shown to silence paternal UBE3A. We hypothesized that alternative splicing factors RBFOX2 and RBFOX1 might mediate splicing changes and result in the transcription of UBE3A-ATS in neurons. We found that RBFOX2 and RBFOX1 both bind to UBE3A-ATS transcript in neurons, but are not required for gene expression and/or neuron-specific processing in the SNURF/SNRPN-UBE3A region. However, we found that depletion of RBFOX2 causes a proliferation phenotype in immature neural cultures, suggesting that RBFOX2 is involved in division versus differentiation decisions in iPSC-derived neural progenitors. Absence of RBFOX2 also altered the expression of some genes that are important for glutamatergic neocortical development and Wnt-Frizzled signalling in mature neuronal cultures. Our data show that while RBFOX1 and RBFOX2 do not mediate neuron-specific processing of UBE3A-ATS, these proteins play important roles in developing neurons and are not completely functionally redundant.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Factores de Empalme de ARN/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Impresión Genómica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Neuronas/metabolismo , Factores de Empalme de ARN/genética , Proteínas Represoras/genética , Vía de Señalización Wnt
14.
Front Genet ; 7: 205, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933089

RESUMEN

Chromosome 15q11-q13.1 duplication is a common copy number variant associated with autism spectrum disorder (ASD). Most cases are de novo, maternal in origin and fully penetrant for ASD. Here, we describe a unique family with an interstitial 15q11.2-q13.1 maternal duplication and the presence of somatic mosaicism in the mother. She is typically functioning, but formal autism testing showed mild ASD. She had several congenital anomalies, and she is the first 15q Duplication case reported in the literature to develop unilateral renal carcinoma. Her two affected children share some of these clinical characteristics, and have severe ASD. Several tissues in the mother, including blood, skin, a kidney tumor, and normal kidney margin tissues were studied for the presence of the 15q11-q13.1 duplication. We show the mother has somatic mosaicism for the duplication in several tissues to varying degrees. A growth competition assay in two types of stem cells from duplication 15q individuals was also performed. Our results suggest that the presence of this interstitial duplication 15q chromosome may confer a previously unknown growth advantage in this particular individual, but not in the general interstitial duplication 15q population.

15.
Stem Cell Res ; 12(1): 101-18, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157591

RESUMEN

Molecular genetic studies are typically performed on homogenized biological samples, resulting in contamination from non-neuronal cells. To improve expression profiling of neurons we combined patch recordings with single-cell PCR. Two iPSC lines (healthy subject and 22q11.2 deletion) were differentiated into neurons. Patch electrode recordings were performed on 229 human cells from Day-13 to Day-88, followed by capture and single-cell PCR for 13 genes: ACTB, HPRT, vGLUT1, ßTUBIII, COMT, DISC1, GAD1, PAX6, DTNBP1, ERBB4, FOXP1, FOXP2, and GIRK2. Neurons derived from both iPSC lines expressed ßTUBIII, fired action potentials, and experienced spontaneous depolarizations (UP states) ~2 weeks before vGLUT1, GAD1 and GIRK2 appeared. Multisite calcium imaging revealed that these UP states were not synchronized among hESC-H9-derived neurons. The expression of FOXP1, FOXP2 and vGLUT1 was lost after 50 days in culture, in contrast to other continuously expressed genes. When gene expression was combined with electrophysiology, two subsets of genes were apparent; those irrelevant to spontaneous depolarizations (including vGLUT1, GIRK2, FOXP2 and DISC1) and those associated with spontaneous depolarizations (GAD1 and ERBB4). The results demonstrate that in the earliest stages of neuron development, it is useful to combine genetic analysis with physiological characterizations, on a cell-to-cell basis.


Asunto(s)
Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Calcio/química , Diferenciación Celular , Línea Celular , Ensayo Cometa , Fenómenos Electrofisiológicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Colorantes Fluorescentes/química , Eliminación de Gen , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Receptor ErbB-4 , Análisis de la Célula Individual , Factores de Tiempo , Transcriptoma
16.
Stem Cells Dev ; 22(10): 1522-40, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23286225

RESUMEN

We tested whether dopaminergic drugs can improve the protocol for in vitro differentiation of H9 human embryonic stem cells (hESCs) into dopaminergic neurons. The expression of 5 dopamine (DA) receptor subtypes (mRNA and protein) was analyzed at each protocol stage (1, undifferentiated hESCs; 2, embryoid bodies [EBs]; 3, neuroepithelial rosettes; 4, expanding neuroepithelium; and 5, differentiating neurons) and compared to human fetal brain (gestational week 17-19). D2-like DA receptors (D2, D3, and D4) predominate over the D1-like receptors (D1 and D5) during derivation of neurons from hESCs. D1 was the receptor subtype with the lowest representation in each protocol stage (Stages 1-5). D1/D5-agonist SKF38393 and D2/D3/D4-agonist quinpirole (either alone or combined) evoked Ca(2+) responses, indicating functional receptors in hESCs. To identify when receptor activation causes a striking effect on hESC neurodifferentiation, and what ligands and endpoints are most interesting, we varied the timing, duration, and drug in the culture media. Dopaminergic agonists or antagonists were administered either early (Stages 1-3) or late (Stages 4-5). Early DA exposure resulted in more neuroepithelial colonies, more neuronal clusters, and more TH(+) clusters. The D1/D5 antagonist SKF83566 had a strong effect on EB morphology and the expression of midbrain markers. Late exposure to DA resulted in a modest increase in TH(+) neuron clusters (∼75%). The increase caused by DA did not occur in the presence of dibutyryl cAMP (dbcAMP), suggesting that DA acts through the cAMP pathway. However, a D2-antagonist (L741) decreased TH(+) cluster counts. Electrophysiological parameters of the postmitotic neurons were not significantly affected by late DA treatment (Stages 4-5). The mRNA of mature neurons (VGLUT1 and GAD1) and the midbrain markers (GIRK2, LMX1A, and MSX1) were lower in hESCs treated by DA or a D2-antagonist. When hESCs were neurodifferentiated on PA6 stromal cells, DA also increased expression of tyrosine hydroxylase. Although these results are consistent with DA's role in potentiating DA neurodifferentiation, dopaminergic treatments are generally less efficient than dbcAMP alone.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Neuronas/citología , Receptores Dopaminérgicos/metabolismo , Adulto , Biomarcadores/metabolismo , Western Blotting , Encéfalo/metabolismo , Bucladesina/farmacología , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Técnicas de Cocultivo , Medios de Cultivo/farmacología , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Cuerpos Embrioides/citología , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Dopaminérgicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA