Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(1): 80-93, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38103561

RESUMEN

Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.


Asunto(s)
Proteostasis , Factores de Transcripción , Proteostasis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Chaperonas Moleculares/genética , Cromatina/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo
2.
Mol Cell ; 81(8): 1715-1731.e6, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33784494

RESUMEN

Heat shock instantly reprograms transcription. Whether gene and enhancer transcription fully recover from stress and whether stress establishes a memory by provoking transcription regulation that persists through mitosis remained unknown. Here, we measured nascent transcription and chromatin accessibility in unconditioned cells and in the daughters of stress-exposed cells. Tracking transcription genome-wide at nucleotide-resolution revealed that cells precisely restored RNA polymerase II (Pol II) distribution at gene bodies and enhancers upon recovery from stress. However, a single heat exposure in embryonic fibroblasts primed a faster gene induction in their daughter cells by increasing promoter-proximal Pol II pausing and by accelerating the pause release. In K562 erythroleukemia cells, repeated stress refined basal and heat-induced transcription over mitotic division and decelerated termination-coupled pre-mRNA processing. The slower termination retained transcripts on the chromatin and reduced recycling of Pol II. These results demonstrate that heat-induced transcriptional memory acts through promoter-proximal pause release and pre-mRNA processing at transcription termination.


Asunto(s)
Mitosis/genética , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/genética , Transcripción Genética/genética , Línea Celular Tumoral , Cromatina/genética , Fibroblastos/fisiología , Regulación de la Expresión Génica/genética , Genoma/genética , Respuesta al Choque Térmico/genética , Humanos , Células K562 , ARN Polimerasa II/genética , ARN Mensajero/genética
3.
Annu Rev Biochem ; 80: 1089-115, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21417720

RESUMEN

To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Unión al ADN/metabolismo , Enfermedad , Respuesta al Choque Térmico/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Humanos , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Transducción de Señal/fisiología , Factores de Transcripción/genética , Activación Transcripcional
4.
Nucleic Acids Res ; 50(11): 6102-6115, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35687139

RESUMEN

Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 localizes to a unique set of promoters and enhancers to trans-activate oxidative stress-specific genes. Taken together, we show that HSFs function as multi-stress-responsive factors that activate distinct genes and enhancers when encountering changes in temperature and redox state.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Estrés Oxidativo/genética , ARN Polimerasa II/metabolismo
5.
Nat Rev Mol Cell Biol ; 11(8): 545-55, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20628411

RESUMEN

Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Animales , Crecimiento y Desarrollo , Proteínas de Choque Térmico/genética , Humanos , Longevidad , Modelos Biológicos , Filogenia , Estrés Fisiológico , Factores de Transcripción/genética
6.
J Cell Sci ; 132(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676663

RESUMEN

Cellular stress triggers reprogramming of transcription, which is required for the maintenance of homeostasis under adverse growth conditions. Stress-induced changes in transcription include induction of cyto-protective genes and repression of genes related to the regulation of the cell cycle, transcription and metabolism. Induction of transcription is mediated through the activation of stress-responsive transcription factors that facilitate the release of stalled RNA polymerase II and so allow for transcriptional elongation. Repression of transcription, in turn, involves components that retain RNA polymerase II in a paused state on gene promoters. Moreover, transcription during stress is regulated by a massive activation of enhancers and complex changes in chromatin organization. In this Review, we highlight the latest research regarding the molecular mechanisms of transcriptional reprogramming upon stress in the context of specific proteotoxic stress responses, including the heat-shock response, unfolded protein response, oxidative stress response and hypoxia response.


Asunto(s)
Regulación de la Expresión Génica/genética , Respuesta al Choque Térmico/genética , Estrés Fisiológico , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Humanos , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética
8.
J Cell Sci ; 127(Pt 2): 261-6, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24421309

RESUMEN

Heat shock factor 1 (HSF1) is an evolutionarily highly conserved transcription factor that coordinates stress-induced transcription and directs versatile physiological processes in eukaryotes. The central position of HSF1 in cellular homeostasis has been well demonstrated, mainly through its strong effect in transactivating genes that encode heat shock proteins (HSPs). However, recent genome-wide studies have revealed that HSF1 is capable of reprogramming transcription more extensively than previously assumed; it is also involved in a multitude of processes in stressed and non-stressed cells. Consequently, the importance of HSF1 in fundamental physiological events, including metabolism, gametogenesis and aging, has become apparent and its significance in pathologies, such as cancer progression, is now evident. In this Cell Science at a Glance article, we highlight recent advances in the HSF1 field, discuss the organismal control over HSF1, and present the processes that are mediated by HSF1 in the context of cell type, cell-cycle phase, physiological condition and received stimuli.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Animales , División Celular/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Factores de Transcripción/química
9.
Proc Natl Acad Sci U S A ; 110(36): E3388-97, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23959860

RESUMEN

Heat shock factors (HSFs) are the master regulators of transcription under protein-damaging conditions, acting in an environment where the overall transcription is silenced. We determined the genomewide transcriptional program that is rapidly provoked by HSF1 and HSF2 under acute stress in human cells. Our results revealed the molecular mechanisms that maintain cellular homeostasis, including HSF1-driven induction of polyubiquitin genes, as well as HSF1- and HSF2-mediated expression patterns of cochaperones, transcriptional regulators, and signaling molecules. We characterized the genomewide transcriptional response to stress also in mitotic cells where the chromatin is tightly compacted. We found a radically limited binding and transactivating capacity of HSF1, leaving mitotic cells highly susceptible to proteotoxicity. In contrast, HSF2 occupied hundreds of loci in the mitotic cells and localized to the condensed chromatin also in meiosis. These results highlight the importance of the cell cycle phase in transcriptional responses and identify the specific mechanisms for HSF1 and HSF2 in transcriptional orchestration. Moreover, we propose that HSF2 is an epigenetic regulator directing transcription throughout cell cycle progression.


Asunto(s)
Ciclo Celular/genética , Cromatina/genética , Respuesta al Choque Térmico/genética , Mitosis/genética , Transcripción Genética , Sitios de Unión/genética , Western Blotting , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células K562 , Masculino , Chaperonas Moleculares/genética , Poliubiquitina/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
11.
Cell Stress Chaperones ; 29(2): 235-271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458311

RESUMEN

Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Humanos , Masculino , Proteínas de Unión al ADN/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo
12.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311120

RESUMEN

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Asunto(s)
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Respuesta al Choque Térmico/genética , Biología
13.
J Biol Chem ; 287(27): 23216-26, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22584572

RESUMEN

ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación/fisiología , Animales , Neoplasias de la Mama , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Receptores ErbB/química , Receptores ErbB/genética , Femenino , Células HEK293 , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Proteína de la Leucemia Promielocítica , Proteínas Inhibidoras de STAT Activados/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Interferente Pequeño/genética , Receptor ErbB-4 , Transducción de Señal/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
14.
Development ; 137(19): 3177-84, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20724452

RESUMEN

miR-18 belongs to the Oncomir-1 or miR-17~92 cluster that is intimately associated with the occurrence and progression of different types of cancer. However, the physiological roles of the Oncomir-1 cluster and its individual miRNAs are largely unknown. Here, we describe a novel function for miR-18 in mouse. We show that miR-18 directly targets heat shock factor 2 (HSF2), a transcription factor that influences a wide range of developmental processes including embryogenesis and gametogenesis. Furthermore, we show that miR-18 is highly abundant in testis, displaying distinct cell-type-specific expression during the epithelial cycle that constitutes spermatogenesis. Expression of HSF2 and of miR-18 exhibit an inverse correlation during spermatogenesis, indicating that, in germ cells, HSF2 is downregulated by miR-18. To investigate the in vivo function of miR-18 we developed a novel method, T-GIST, and demonstrate that inhibition of miR-18 in intact seminiferous tubules leads to increased HSF2 protein levels and altered expression of HSF2 target genes. Our results reveal that miR-18 regulates HSF2 activity in spermatogenesis and link miR-18 to HSF2-mediated physiological processes such as male germ cell maturation.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , MicroARNs/genética , Espermatogénesis , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatocitos/metabolismo , Factores de Transcripción/genética
15.
J Extracell Biol ; 2(12): e124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38938900

RESUMEN

Extracellular vesicles (EVs) are important mediators of intercellular communication involved in local and long-range signalling of cancer metastasis. The onset of invasion is the key step of the metastatic cascade, but the secretion of EVs has remained unexplored at that stage due to technical challenges. In this study, we present a platform to track EVs over the course of invasive development of human prostate cancer cell (PC3) tumoroids utilizing in vivo-mimicking extracellular matrix-based 3D cultures. Using this EV production method, combined with proteomic profiling, we show that PC3 tumoroids secrete EVs with previously undefined protein cargo. Intriguingly, an increase in EV amounts and extensive changes in the EV protein composition were detected upon invasive transition of the tumoroids. The changes in EV protein cargo were counteracted by chemical inhibition of invasion. These results reveal the impact of the tumoroids' invasive status on EV secretion and cargo, and highlight the necessity of in vivo-mimicking conditions for uncovering novel cancer-derived EV components.

16.
Cell Stress Chaperones ; 28(1): 1-9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602710

RESUMEN

The Second International Symposium on Cellular and Organismal Stress Responses took place virtually on September 8-9, 2022. This meeting was supported by the Cell Stress Society International (CSSI) and organized by Patricija Van Oosten-Hawle and Andrew Truman (University of North Carolina at Charlotte, USA) and Mehdi Mollapour (SUNY Upstate Medical University, USA). The goal of this symposium was to continue the theme from the initial meeting in 2020 by providing a platform for established researchers, new investigators, postdoctoral fellows, and students to present and exchange ideas on various topics on cellular stress and chaperones. We will summarize the highlights of the meeting here and recognize those that received recognition from the CSSI.


Asunto(s)
Chaperonas Moleculares , Estrés Fisiológico , Humanos , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares/fisiología , Estrés Fisiológico/fisiología
17.
FEBS J ; 289(24): 7710-7725, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478606

RESUMEN

The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.


Asunto(s)
Proteínas de Choque Térmico , Factores de Transcripción , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción del Choque Térmico/genética , Mamíferos/genética , Mamíferos/metabolismo
18.
STAR Protoc ; 3(1): 101036, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35036951

RESUMEN

Nascent RNA-sequencing tracks transcription at nucleotide resolution. The genomic distribution of engaged transcription complexes, in turn, uncovers functional genomic regions. Here, we provide analytical steps to (1) identify transcribed regulatory elements de novo genome-wide, (2) quantify engaged transcription complexes at enhancers, promoter-proximal regions, divergent transcripts, gene bodies, and termination windows, and (3) measure distribution of transcription machineries and regulatory proteins across functional genomic regions. This protocol tracks engaged transcription complexes across functional genomic regions demonstrated in human K562 erythroleukemia cells. For complete details on the use and execution of this protocol, please refer to Vihervaara et al. (2021).


Asunto(s)
ARN , Secuencias Reguladoras de Ácidos Nucleicos , Secuencia de Bases , Humanos , Regiones Promotoras Genéticas , ARN/genética , Análisis de Secuencia de ARN/métodos
19.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385105

RESUMEN

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Asunto(s)
Proteína de Unión a CREB , Proteínas de Choque Térmico , Trastornos del Neurodesarrollo , Síndrome de Rubinstein-Taybi , Factores de Transcripción , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
20.
J Biol Chem ; 285(45): 34469-76, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20802198

RESUMEN

Heat shock factor 1 (HSF1) is an important transcription factor in cellular stress responses, cancer, aging, and developmental processes including gametogenesis. Disruption of Hsf1, together with another HSF family member, Hsf2, causes male sterility and complete lack of mature sperm in mice, but the specific role of HSF1 in spermatogenesis has remained unclear. Here, we show that HSF1 is transiently expressed in meiotic spermatocytes and haploid round spermatids in mouse testis. The Hsf1(-/-) male mice displayed regions of seminiferous tubules containing only spermatogonia and increased morphological abnormalities in sperm heads. In search for HSF1 target genes, we identified 742 putative promoters in mouse testis. Among them, the sex chromosomal multicopy genes that are expressed in postmeiotic cells were occupied by HSF1. Given that the sex chromatin mostly is repressed during and after meiosis, it is remarkable that HSF1 directly regulates the transcription of sex-linked multicopy genes during postmeiotic repression. In addition, our results show that HSF1 localizes to the sex body prior to the meiotic divisions and to the sex chromocenter after completed meiosis. To the best of our knowledge, HSF1 is the first known transcription factor found at the repressed sex chromatin during meiosis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Meiosis/fisiología , Túbulos Seminíferos/metabolismo , Cromatina Sexual/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Femenino , Regulación de la Expresión Génica/fisiología , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Familia de Multigenes/fisiología , Cromatina Sexual/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA