RESUMEN
AbstractPopulation-level variation in rodent tail structures has been variously attributed to facilitating social communication, locomotion, thermoregulation, and predator avoidance. Little is known, however, about the applicability of these ecological and social correlates to explaining the tremendous interspecific diversity of this appendage. To investigate the potential drivers of rodent tail morphology at a macroevolutionary level, we first carefully reviewed the literature and constructed a list of major hypotheses regarding this variation. We then compiled a database of 11 different tail traits related to length, color, texture, and ecological characteristics for 2,101 species of rodents (order Rodentia) and examined their key evolutionary correlates. Using Bayesian phylogenetic mixed models across the entire order and additionally within the five rodent suborders, we found that tail length is correlated with both temperature (Allen's rule) and locomotory mode, that black tips are more common in brightly lit environments, that naked tails are often found in warmer climates, that fluffy-tipped tails are more common in smaller and/or arboreal species, that prehensility is predominant in arboreal species and/or species with longer tails, and that tail autotomy is more common in open environments. Most of our tested predictions, largely drawn from population-level studies, are not recapitulated across the entire order, potentially indicating a role of local ecological context in shaping tail morphology.